Метод Гаусса. (Карл Фридрих Гаусс (1777-1855) немецкий математик)
(Карл Фридрих Гаусс (1777-1855) немецкий математик) В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных. Рассмотрим систему линейных уравнений: Разделим обе части 1–го уравнения на a11 ¹ 0, затем: 1) умножим на а21 и вычтем из второго уравнения 2) умножим на а31 и вычтем из третьего уравнения и т.д. Получим:
dij = aij – ai1d1j i = 2, 3, …, n; j = 2, 3, …, n+1.
Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д.
Пример. Решить систему линейных уравнений методом Гаусса. Составим расширенную матрицу системы. А* =
Таким образом, исходная система может быть представлена в виде:
Пример. Решить систему методом Гаусса. Составим расширенную матрицу системы. Таким образом, исходная система может быть представлена в виде:
Полученный ответ совпадает с ответом, полученным для данной системы методом Крамера и матричным методом.
|