Система линейных алгебраических уравнений
Материал из Википедии — свободной энциклопедии (Перенаправлено с СЛАУ) Это версия страницы, ожидающая проверки. Последняя подтверждённая версия датируется 23 мая 2010.
Данная версия страницы не проверялась участниками с соответствующими правами. Вы можете прочитать последнюю стабильную версию, проверенную 23 мая 2010, однако она может значительно отличаться от текущей версии. Проверки требуют 14 правок. Перейти к: навигация, поиск Система m линейных уравнений с n неизвестными (или, линейная система) в линейной алгебре — это система уравнений вида
Здесь x 1, x 2, …, xn — неизвестные, которые надо определить. a 11, a 12, …, amn — коэффициенты системы — и b 1, b 2, … bm — свободные члены — предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно[1]. Система (1) называется однородной, если все её свободные члены равны нулю (b 1 = b 2 = … = bm = 0), иначе — неоднородной. Система (1) называется квадратной, если число m уравнений равно числу n неизвестных. Решение системы (1) — совокупность n чисел c 1, c 2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все её уравнения в тождества. Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения. Совместная система вида (1) может иметь одно или более решений. Решения c 1(1), c 2(1), …, cn (1) и c 1(2), c 2(2), …, cn (2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:
Совместная система вида (1) называется определённой, если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называется неопределённой. Если уравнений больше, чем неизвестных, она называется переопределённой.
|