БИЛЕТ № 14. ЗадвижкиЗадвижки обычно применяются на трубопроводах среднего и большого диаметра (от 50 до 200 мм и выше)
Задвижки Задвижки обычно применяются на трубопроводах среднего и большого диаметра (от 50 до 200 мм и выше). Задвижки отличаются от вентилей малым гидравлическим сопротивлением, небольшими габаритами и простотой конструкции. Однако герметичность запорных органов задвижек ниже герметичности вентилей. Применяются они главным образом на газовых средах.Задвижки разделяются на параллельные и клиновые. На рис. 1.30. приведена параллельная задвижка. Запорным органом является шибер, состоящий из двух симметричных плашек 13, между которыми помещается клин 12; последний при опускании плашек распирает их, прижимая к уплотняющим поверхностям корпуса 1.Рис. 1.30. Конструкция чугунной задвижки (параллельная): 1 – корпус; 2 – крышки; 3 – шпиндель; 4 – мягкая набивка; 5 – нажимная втулка; 6 – гайка для подтяжки сальника; 7 – ходовая гайка; 8 – маховик; 9 – фиксирующая гайка; 10 – уплотнительное кольцо плашки; 11 – разжимной клин; 12 - клин; 13 – плашкиПри малых давлениях обычно используют параллельные задвижки, при больших давлениях – клиновые. В зависимости от способа уплотнения затвора клиновые задвижки могут перекрывать технологический поток при помощи непосредственно клина (рис.1.31. а), либо при помощи клина, который задвигает плашки, прижимая их плотно к поверхности задвижки (рис. 1.31. б). Рис. 1.31. Способы уплотнения затворов: а – клином; б – плашкамиРабочая полость задвижки (клиновая) рис. 1.32, в которую подается транспортируемая под давлением среда, образуется корпусом 1и верхней крышкой 2. Герметизируется эта полость при помощи прокладки 13, которая прижимается крышкой к корпусу. Рис. 1.30. Корпус задвижки представляет собой цельную, литую или сварную конструкцию. На корпусе, симметрично оси шпинделя, располагаются два патрубка, которыми задвижка присоединяется к трубопроводу. Присоединение может быть либо Рис. 1.31 сварным, либо фланцевым. Внутри корпуса имеются два уплотнительных кольца 1и затвор 3,который в данном случае представляет собой клин с наплавленными уплотнительными кольцевыми поверхностями. В закрытом положении уплотнительные поверхности затвора прижимаются к рабочим поверхностям колец корпуса. Рис. 1.32. Литая стальная задвижка (клиновая): 1 – корпус; 2 – крышка; 3 – клин; 4 – съемное уплотнительное кольцо; 5 – шпиндель; 6 – гайка ходовая; 7 – маховик; 8 – нажимная планка; 9 – стяжная шпилька; 10 – гайка; 11 – мягкая набивка; 12 – шпилька; 3 – прокладкаНа рис. 1.33. показаны различные конструкции опоры втулки маховика. Опоры качения применяют для задвижек больших диаметров и при механизированном приводе, который создает возможность дистанционного управления задвижками. Уплотнительные поверхности седел и затвора с целью уменьшения износа и усилий трения, при перемещении затвора, обычно изготавливают из материалов, отличающихся от материала корпуса, путем запрессовки, что позволяет их менять в процессе эксплуатации. В верхней части затвора 2закреплена ходовая гайка 3, в которую ввинчен шпиндель, жестко соединенный с маховиком. Система винт-гайка служит для преобразования вращательного движения маховика (при открывании или закрывании задвижки) в поступательное перемещение затвора. Рис. 1.33. Конструкция опоры втулки маховика: а – скольжения; рис. 1.32, б – качения; 1 – маховик; 2 – крышка задвижки; 3 – ходовая гайка; 4 – подшипник качения; 5 – шпонка Вентили Вентили позволяют регулировать расход среды, а иногда и давление (путем дросселирования). Вентили представляют собой запорную арматуру с затвором в виде плоской или конической тарелки (золотника) (рис.1.34.), которая перемещается возвратно-поступательно вместе со шпинделем относительно седла. Запирающей парой в вентиле служат седло 8 и клапан (золотник) 7. Сопряжение седла с клапаном происходит либо по конической, либо цилиндрической поверхности. Рис. 1.34. Конструкция вентиля: 1 – корпус; 2 – крышка; 3 – шпиндель; 4 – гайка ходовая; 5 – маховик; 6 – сопряжение штока с клапаном; 7 – клапан; 8 – съемное седло клапана Рис. 1.33. Вентили станавливаются на жидких средах и паропроводах, обладают большим гидравлическим сопротивлением. Их изготавливают из чугуна, стали, пластмасс и других металлов. Вентили на трубопроводе устанавливаются так, чтобы среда в них попадала из-под золотника, направление среды указано стрелкой на корпусе вентиля.Вентили станавливаются на жидких средах и паропроводах, обладают большим гидравлическим сопротивлением. Их изготавливают из чугуна, стали, пластмасс и других металлов. Вентили на трубопроводе устанавливаются так, чтобы среда в них попадала из-под золотника, направление среды указано стрелкой на корпусе вентиля. 2 Оборудование для концентрирования латексов Концентрированные латексы необходимы при изготовлении клеев, губчатой резины и маканных изделий. Работы по получению таких латексов в настоящее время проводятся в двух направлениях: получение концентрированных латексов непосредственно в процессе полимеризации и повышение сухого остатка в готовых латексах с применением различных методов концентрирования.В промышленности применяют следующие способы для повышения содержания сухого остатка в готовых латексах: сливкообразование, центрифугирование, вымораживание, упаривание и ультрафильтрование. При концентрировании синтетического латекса необходимо учитывать его специфические свойства, затрудняющие практическое осуществление процесса: термическую неустойчивость, чувствительность к механическим воздействиям, способность к пленко- и пенообразованию. Водные дисперсии неэмульсионных полимеров концентрируются упариванием или центрифугированием. Искусственные водные дисперсии имеют частицы полимера больших размеров - 7500 -100000 нм. При начальной концентрации сухого вещества 15-30% после сепарации получают концентрат с содержанием сухого вещества 50- 60% и серум с содержанием сухого вещества 6- 15%. Для снижения потерь полимера серум концентрируется дополнительно.Для упаривания натурального латекса используется аппарат, представляющий собой вращающийся цилиндр с двойными стенками (рис.8.6.). Рис. 8.6. Горизонтальный концентратор для концентрирования латекса в токе воздуха: 1 – корпус; 2 – штуцер для входа горячей воды; 3 – штуцер для выхода воды; 4 – стойка; 5 – опорная станция; 6 – привод; 7 – зубчатое кольцо; 8 – опорно-упорная станина; 9 – штуцер для отбора проб; 10 – рубашкаВнутри цилиндра свободно размещается другой цилиндр. Обогрев латекса осуществляется горячей водой, а упаривание – за счет продувки воздуха над нагретым латексом. Непрерывное концентрирование латекса в вакууме можно осуществлять в колонном аппарате пленочного, распылительного или тарелочного типа (рис. 8.7.).
|