Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

КОНСПЕКТ ЛЕКЦИЙ 2 страница





Однако уже в 70-х гг. XIX в. стали появляться противники мо­нографического метода. Недовольство методом нарастало, и в 80—90-х гг. русские математики выступили с его резкой критикой, противопоставляя ему метод изучения действий, или, иначе, вы­числительный метод.

1 Рисунки числовых фигур представлены в хрестоматии к данному учебному пособию: (Теории и технологии математического развития детей дошкольного возраста».

Несмотря на критику монографического метода, непризнание его в русских школах, поклонник этого метода Д. Л. Волковский издал книгу «Детский мир в числах» (1912). Книга иллюстрирова­лась числовыми фигурами В. А. Лая, карточками и чертежами.

Она была предназначена не только для начальной школы, но и для приготовительных классов женских гимназий, детских садов и до­машнего обучения. Таким образом, монографический метод про­ник в детский сад и получил там широкое распространение, по нему сравнительно долго строилось обучение детей счету.

В одном из научных исследований того времени (см.: К. Ф. Ле-бединцев «Развитие числовых представлений в раннем детстве».— Киев, 1923) автор, основываясь на наблюдениях за детьми, утверж­дает, что первые числовые представления ребенка — результат «це­лостного» восприятия им множеств, различения групп предметов (до 4—5). Освоение умений сосчитывать эти небольшие совокуп­ности признавалось необязательным, а численность групп из более чем 5 элементов устанавливалась с помощью счета.

Другой метод — метод изучения действий (вычислительный) — предполагал обучение детей вычислениям и пониманию смысла арифметических действий. Обучение при этом строилось по деся­тичным концентрам. В пределах каждого концентра изучались не отдельные числа, а счет и действия с числами.

Оба метода (и монографический, и вычислительный) сыграли положительную роль в дальнейшем развитии методики, которая вобрала в себя приемы, упражнения, дидактические средства одного и другого методов.

Математическое развитие дошкольников средствами «веселой» занимательной математики

В конце ХГХ — начале XX вв. были широко распространены идеи обучения математике без принуждения и дидактичности, за­бавно, но без излишней занимательности. Математики, психологи, педагоги разрабатывали математические игры и развлечения, со­ставляли сборники задач на смекалку, преобразование фигур, ре­шение головоломок (В. А. Латышев, Н. Н. Аменицкий, И. П. Саха­ров, А. П. Доморяд, В. Арене и др.).

Авторы стремились придать четкую логику построения, не­обычность задачам-шуткам, арифметическим ребусам, задачам-головоломкам, задачам на деление целого на части и т. д. В ходе решения таких задач развиваются способность к правильному мышлению, логичность и последовательность мысли, острый ум и смекалка. Задачи на сообразительность, сметливость учат детей применять имеющиеся у них знания к различным случаям жизни, приучают к самоконтролю, а главное — способствуют выработке у детей умений самостоятельно искать путь решения.

Ряд книг был издан специально с целью развития способно­стей детей, в частности «Забавная арифметика» Н. Н. Аменицкого и И. П. Сахарова. В ней предлагалось живое и забавное решение различных практических задач и вопросов, что стимулировало проявления детской самодеятельности.

Широко применялись в обучении и развитии детей математи­ческие игры, в ходе которых был необходим подробный и четкий анализ игровых действий, возможность проявить смекалку в ходе поисков, самостоятельность. Значение математических игр рас­сматривалось авторами с позиций развития у детей интереса к изучению математики, становления умственных способностей, смекалки и сообразительности, находчивости, волевых черт ха­рактера, а также приучения детей к умственному труду.

Резюме

Для первого этапа становления методики развития математи­ческих представлений у детей дошкольного возраста характерно следующее.

Выдвижение и обоснование идей развития у детей количест­венных, геометрических, пространственных и временных представлений; создание с этой целью предметно-игровой среды (М. Монтессори, Ф. Фребель) и разработка методик ов­ладения действиями сравнения, деления на части, сосчитыва-ния, измерения и др.

Активный поиск методов обучения и развития детей дошколь­ного и начального школьного возраста. Ж.1- Интерес к занимательной математике (прикладной) как сред­ству развития детских интересов, приобщения детей к осу­ществлению умственных усилий, «думанию» и сообразитель­ности.

Щ Отсутствие теоретических и методических разработок, пред­ставляющих собой целостную систему развития математиче­ских способностей детей дошкольного возраста.

Литература

1. Аменицкий Н. Н., Сахаров И. П. Забавная арифметика. — М.: Наука, 1992.

2. Игры со спичками. Задачи и развлечения. / Сост.: Улиц-кий А. Т., Улицкий Л. А. — Минск: Вуал, 1993.

3. Литературный материал с математическим содержанием. / Сост.: Михайлова 3. А., Непомнящая Р. Л. — СПб.: ЦВПО, 2005.

 

4. Михайлова З.А. Игровые занимательные задачи для до­школьников.— М.: Просвещение, 1989.

5. Открываю математику. / Авт.-сост. Калинина М. И. и др.— М.: Просвещение, 2005.

6. Теории и технологии математического развития детей до­школьного возраста. Хрестоматия / Сост.: 3. А. Михайлова, Р. Л. Непомнящая, М. Н. Полякова. — М.: Центр педагогического образования, 2008.

7. Упражнение с Монтессори-материалом. Дом Марии Мон­тессори.— Рига—Москва: Педагогический центр «Эксперимент», 1998.

 

1.2. Теории и методика математического развития детей дошкольного возраста (20—50-е гг. XX в.) (второй этап развития методики)

В 20-е гг. XX в. резко расширилась сеть дошкольных учрежде­ний, была создана принципиально новая система общественного дошкольного воспитания. Обсуждались проблемы отбора содер­жания, методов развития математических представлений у детей как основа освоения математики в школе. В эти годы Е. И. Тихее-вой, Л. В. Глаголевой, Ф. Н. Блехер и другими разрабатывались методические пособия (илл. 1, 2), программы, игры и дидактиче­ские материалы, способствующие математическому развитию до­школьников.

Е. И. Тихеева в 20—30-е гг. XX в. четко определила свои пози­ции в области математического развития детей дошкольного воз­раста. Ею разработаны новые методы и приемы формирования

основ математических представле­ний у детей; уточнено содержание обучения, созданы дидактические средства: наглядные материалы, учебные пособия, методические пособия для воспитателей.

Во взглядах Е. И. Тихеевой от­ражены общепедагогические воз­зрения того

 

 

времени. Она считала центром воспитания и обучения накопление детьми восприятий, усвоение ими научных истин пу­тем самодеятельности, поощрение пытливости их ума, создание усло­вий, при которых ребенок самосто­ятельно находит то, что ему нужно, и это нужное усваивает.

При выработке собственных воззрений Е. И. Тихеевой исполь­зованы результаты работ зарубеж­ных педагогов: И. Г. Песталоцци, Ф. Фребеля, Марии Монтессори, а также практика работы воспитате­лей отечественных детских садов.

Позиция Е. И. Тихеевой рас­крыта и обоснована в предложен­ном ею «естественном» пути раз­вития детей. «Естественный» путь развития понимался ею как един­ственный путь, ведущий к нор­мальному развитию числовых и в целом математических пред­ставлений у детей.

Этот путь обеспечивал развитие математических представле­ний в соответствии с возрастными и индивидуальными возмож­ностями, запросами каждого ребенка. С другой стороны, «естест­венный» путь понимался как соответствующий «данному момен­ту» развития ребенка: сложившейся ситуации и непосредственно в ней возникшему интересу к сравнению, измерению, счету, со­ставлению арифметических примеров и задач, делению предмета на доли. В целом условием развития ребенка Е. И. Тихеева счита­ла сформированность соответствующих предпосылок. Поэтому она была категорически против навязывания знаний. По ее мне­нию, педагог должен всегда задавать себе вопрос: готов ли ребенок к восприятию тех или иных знаний (например, о числе, цифрах и т. д.)? И только в случае готовности ребенка предлагать ему самостоятельно воспринимать то, до чего он дорос.

«Естественный» путь развития ребенка в области математики протекает в самодеятельности, которая понимается как активное участие ребенка во всем, что его интересует. Для организации самодеятельности необходимо включение детей в деятельное наблюдение жизни, что поощряет пытливость их ума; создание условий развития; руководство развитием; обучение. Самодея­тельность организуется с учетом индивидуальных особенностей детей. Для тех из них, кто не может «мимоходом в самодеятель­ности» освоить материал, необходимо создать специальные ус­ловия.

Одним из основных условий освоения математики Е. И. Ти­хеева считала наличие необходимых пособий, позволяющих ре­бенку выбирать те объекты, которые его интересуют, и активно действовать. По мнению Тихеевой, наглядный материал должен быть простым и стимулировать детей к самостоятельным заняти­ям. Взрослый организует с детьми игры-занятия и вносит разно­образие в игру детей. Он ставит перед детьми познавательную за­дачу, лично участвует в игре до тех пор, пока дети не начнут само­стоятельно пользоваться материалом и решать поставленные в процессе игры задачи.

Основная задача педагога при руководстве игрой — вести ее так, чтобы получить наибольший эффект. Индивидуальные заня­тия Е. И. Тихеева считала более значимыми и ценными, нежели коллективные.

Высказанные ею общие положения сводятся к следующему. • Целесообразна серьезность подхода к выбору методических приемов в силу слабой изученности закономерностей разви­тия числовых представлений у детей.

• Особое значение в ряду образовательных средств имеют иг­ры-занятия.

• Правомерен отказ от формального обучения счету, счислению вне детских запросов, возможностей, в отрыве от реальной жизни.

• Играя, ребенок самостоятельно научится считать. Важно, чтобы взрослые были при этом его незаметными помощниками.

• Освоение счета и счисления осуществляется «естественным» путем в условиях активности самого ребенка, проявления им самостоятельности в самостоятельной деятельности.

• Ребенок извлекает числовые представления из жизни (при­родного окружения, быта), что развивает наблюдательность, способствует закреплению представлений и навыков в даль­нейших играх-занятиях с детьми.

• Полезно предлагать ребенку доступные познавательные зада­чи (например: как определить, поместится ли шкаф в просте­нок), включать их в естественную беседу.

Е. И. Тихеева считала, что обучение математике должно быть игровым. Такое обучение удовлетворяет потребность детей в движениях, стремление мыслить, самостоятельно добывать и применять знания. Обучение, одной из форм организации ко­торого являются игры-занятия, соответствует этим требованиям.

Разработанные Е. И. Тихеевой игры-занятия (ранее называе­мые ею задачами) структурно подразделяются на части. Первая часть — это игры на познание количественных соотношений. Они предназначены для формирования у детей общих представлений о количестве, ориентировки их в длине, ширине, высоте, распо­ложении предметов в пространстве.

Игры и упражнения второй части — «Роль внешних чувств при образовании числовых представлений» — направлены на раз­витие барического и термического чувств, умений воспринимать количество на слух, по осязанию, например игры с однородными и разнородными по составу материалами (камыш, кирпичи, кубы, мешочки с песком или опилками). Контролирующим аппаратом являются чашечные весы.

Третья часть — «Упражнения в счете до 10 и знакомство с на­чертанием цифр». Дети осваивают счет, отношения больше — меньше, моложе — старше, цифры. Предлагаются задачи на срав­нение в возрастном отношении: «Соне 6 лет, а Володе 3 года. Кто старше? На сколько?»

Четвертая часть названа «Измерения и действия над числами». Особое внимание уделяется установлению соотношений соизме­римых предметов по слову. Взрослый и ребенок называют предме­ты, а другие дети называют признак, по которому можно их срав­нить. Например, доска и рейка сравниваются по ширине (длине, толщине); река и ручеек по глубине и т. д. Игры направлены на вы­работку у детей понятия о различии предметов по длине, высоте, ширине, толщине, глубине, стоимости, массе, площади (размеру). Первоначальному освоению арифметических действий способст­вует игра, в которой действия над числами иллюстрируются кар­тинками. Например, кладется карточка с изображением двух дево­чек и одной. А ниже — карточки с цифрами 2 и 1, соответствующие знаки и результат. Обозначается результат также предметной кар­точкой и цифрой.

Пятая часть игр-занятий — «Переход к абстрактному счисле­нию» — направлена на систематизацию навыков в вычислениях. С этой целью Е. И. Тихеевой были разработаны специальные по­собия.

В последнюю часть игр-занятий — «Составление и решение задач» — включены игры и упражнения, способствующие выра­ботке умений составлять задачу по картинкам, бытовой ситуа­ции, отвечать на вопросы «Что сколько стоит?», «Сколько в не­деле дней?» и др.

В разработанных Е. И. Тихеевой играх-занятиях реализована
созданная ею программа развития у детей математических пред-
ставлений и требования жизненности, реальности в обучении
детей. j

Дидактические материалы Е. И. Тихеева делила на 3 вида: ес­тественный материал (камни, раковины, листья), извлеченный из жизненной обстановки (игрушки, предметы), искусственный (специально разработанный для детей).

Искусственный дидактический материал Тихеева считала особо значимым, так как он выдвигает упрощенные (в сравне­нии с обыденными житейскими) ситуации, обеспечивает повторность, концентрирует внимание детей на определенной задаче. Действуя с досками-дюймовками (разделенными на дюймы), дети осваивают счет и вычисления. Кроме того, это незаменимый материал для строительно-конструктивных игр. При сооружении построек требуется соотношение досок-дюй­мовок по размерам, что обеспечивает постройке прочность и красоту.

Итак, Е. И. Тихеева обосновала ряд положений, характеризу­ющих обучение счету.

1. Обучение строится на основе учета предпосылок детского развития и протекает в форме самодеятельности. Оно невозможно без богатого дидактического материала, жизненного опыта, чет­кого ненавязчивого руководства.

2. Игры-занятия сконструированы ею таким образом, что от освоения простых внешних особенностей предметов и отно­шений между ними (свойства, отношения по количеству, раз­мер) дети переходят к познанию зависимости между величи­нами, числами, усваивают арифметические действия, изме­рения.

3. Руководство игрой, состоящее в постановке познавательных задач, обеспечивает развитие самостоятельности в игре.

До 1939 г. в детских садах Ленинграда обучали счету по ме­тодике Л. В. Глаголевой и Ф. Н. Блехер. Л. В. Глаголева — иссле­дователь, методист, практик. В ряде ее методических пособий («Преподавание арифметики лабораторным методом» (1919), «Сравнение величин предметов в нулевых группах школ» (1930), «Математика в нулевых группах» (1930)) изложены содержание, методы и приемы развития у детей первоначальных представле­ний о числах, величинах и их измерении, делении целого на рав­ные части.

В методике обучения счету и развития числовых представле­ний Л. В. Глаголева рекомендовала опираться как на монографи­ческий, так и вычислительный методы обучения. Во всех посо­биях, разработанных ею, прослеживается мысль о необходимо­сти идти при обучении от числа к числу. Это дает возможность формировать понятие числа во всех отношениях к другим числам (монографический метод).

Л. В. Глаголева писала о том, что самое главное в методике — это подбор и правильное использование такого наглядного по­собия, при помощи которого «восприятие данного числа полу­чилось бы наиболее ярко». В приведенном ею примере точки, камешки, листики используются для иллюстрации любого числа. А такие предметы, как табуретка с четырьмя ножками, квадрат С четырьмя сторонами и четырьмя углами, кошка с четырьмя лапа­ми, помогут ребенку воспринять образ числа 4, а не какого-либо другого.

Л. В. Глаголева пропагандировала разнообразие методов обу­чения. При этом большое значение имел каждый метод: лабо­раторный (практические действия с использованием наглядного материала), исследовательский (поиск детьми ситуаций приме­нения знаний, аналогичных изучаемым), иллюстративный (за­крепление знаний, умений в продуктивной деятельности), на­глядный (демонстрация наглядных пособий). Игра рассматри­валась ею как метод обучения на занятиях. Ценность игры Л. В. Глаголева видела в развитии интересов детей, активности, находчивости и сообразительности, приучения их к наблюда­тельности на основе развития памяти, разумной критики и осо­знания своих ошибок.

Л. В. Глаголева особое внимание уделяла разработке методи­ки обучения детей сравнению величин путем сопоставления и с помощью меры и числа. Навыки в наблюдении над предметами считала основой сравнения. Предполагала, что сначала нужно учить детей видеть, рассматривать и сравнивать предметы в по­мещении, затем — на улице, в природе, а потом — на картинках. Рекомендовала упражнять детей в описании предмета, находя­щегося перед глазами, а затем — по памяти. Высказывалась про­тив первичного использования картинок в сравнении величин, советовала первоначально пользоваться предметами.

Л. В. Глаголева разработала план построения занятий с деть­ми по сравнению величин, выделив в нем 4 момента: образ, опыт, проверка и фиксация. Образ формировался в ходе четкого и отчетливого восприятия величин. В процессе накопления опыта дети изучали данную величину путем лабораторно-иссле-довательского метода. Сравнивали предметы между собой разнообразно: при помощи зрения и осязания вместе, затем — порознь (зрением без осязания и наоборот). Проверка получен­ных детьми восприятий состояла в нахождении в окружающей обстановке и назывании нескольких предметов, где бы иссле­дуемая величина имела место. Например, ребенок замечал, что одна электрическая лампочка висит выше, чем другие. Или ре­бенок называл предметы, про которые можно сказать, что не­которые из них — толще, а другие — тоньше. Фиксация вели­чины осуществлялась в какой-либо результативной детской де­ятельности (рисование, аппликация) и являлась контролем за освоением детьми соответствующих способов познания.

Дальнейшая разработка вопросов методики развития мате­матических представлений была предпринята педагогом и ис­следователем Ф. Н. Блехер (1895—1977). Основные мысли о со­держании и методах обучения изложены ею в книге «Матема­тика в детском саду и нулевой группе» (1934), которая стала первым учебным пособием и программой для высших и средних учебных заведений по математике для советского детского сада. Ею опубликовано большое количество методических пособий, «методических писем» (1930—1940 гг.), в которых периодически предлагались уточнения к программе развития у детей матема­тических представлений, методика организации упражнений и игр, требования к индивидуальному и групповому обучению детей.

В программе обучения детей счету, разработанной Ф. Н. Бле­хер, использовались данные зарубежных психологов, собствен­ных наблюдений о времени и сроках восприятия ребенком разных чисел. На основе этого предлагалось: научить детей 3—4-летнего возраста различать и выделять понятия много и один, числа 1, 2, 3 на основе восприятия соответствующих совокупностей и опре­деления их словом — числительным. В 5—6 лет — считать в пре­делах 10. На основе счета сравнивать числа, пользоваться поряд­ковым счетом. В 6—7 лет — знать состав чисел, цифры, практи­чески составлять числа из меньших групп, производить действия сложения и вычитания, освоить второй десяток, научиться решать простые арифметические задачи, близкие по содержанию жиз­ненному опыту детей.

Согласно содержанию обучения, разработанному Ф. Н. Бле-хер, дети осваивали пространственные и временные отношения, геометрические фигуры, пространственные направления, приемы сравнения предметов, способы оценки временной длительности.

Для реализации поставленных задач Ф. Н. Блехер рекомен­довала использовать два пути: развивать у детей количественные представления в других видах деятельности и проводить специ­альные игры и занятия. По ее мнению, дети должны активно участвовать в практических жизненных ситуациях (например, выяснять, сколько кроваток потребуется только что купленным куклам; определять самостоятельно, путем подсчета по календа­рю, количество дней до праздника); выполнять поручения взрослых, требующие освоения математических представлений; в играх, на занятиях упражняться в образовании групп предме­тов; сравнивать; отсчитывать; действуя с наглядным материа­лом, составлять числа из меньших чисел; находить цифры, по­казывающие то или иное количество и т. д.

Ф. Н. Блехер считала, что развивать у детей количественные представления следует как на основе счета, так и в процессе восприятия групп предметов. Разработанная ею методика обу­чения во многом отражала идеи монографического метода: идти в обучении от числа к числу, строить обучение на целостном восприятии групп предметов, запоминать с детьми случаи со­става чисел (в качестве подготовки к простейшим арифметиче­ским действиям), использовать числовые фигуры и т. д.

Ф. Н. Блехер разработала не только содержание обучения детей, но и методы, преимущественно игровые. Созданная ею система дидактических игр по сей день используется в дошколь­ных учреждениях с целью развития математических представле­ний и умственных способностей детей. Как считала Ф. Н. Бле­хер, дидактические игры, хотя и являются одним из важных при­емов обучения, все же не могут заменить другие его формы и методы.

На основе анализа теоретических и методических публикаций Ф. Н. Блехер можно заключить, что ею создана первая в нашей стране дидактическая система обучения математике в условиях дошкольных учреждений.

1.3. Научно обоснованная дидактическая система формирования элементарных математических представлений в 50—60-е гг. XX в. (третий этап развития методики)

 

Вопросы развития количественных представлений у детей до­школьного возраста разрабатывались А. М. Леушиной (1898—1982) с 50-х гг. XX в. Благодаря ее работам методика развития у детей ма­тематических представлений получила теоретическое, научное и психолого-педагогическое обоснования, были раскрыты законо­мерности развития количественных представлений у детей в усло­виях целенаправленного обучения на занятиях в детском саду. Это стало возможным благодаря глубокому и тщательному анализу раз­личных точек зрения, подходов и концепций формирования число­вых представлений; учету достижений отечественной и зарубежной науки, практики общественного воспитания и обучения дошколь­ников в нашей стране.

Методическая концепция того времени основывалась на рабо­тах Е. И. Тихеевой, Л. В. Глаголевой, Ф. Н. Блехер. Суть ее заклю­чалась в следующем: усвоение ребенком математических пред­ставлений осуществляется в процессе жизни и разнообразной де­ятельности. Играя, работая, дети сами черпают необходимые им для развития знания из окружающего мира. Педагог должен лишь создавать условия, пользоваться каждым удобным случаем для со­вершенствования количественных представлений у детей.

При таком подходе основное внимание уделялось разработке дидактического материала, играм и упражнениям как основному методу и средству работы с детьми.

А. М. Леушина разработала основы дидактической системы формирования элементарных математических представлений, со­здав программу, содержание, методы и приемы работы с детьми от 3 до 6 лет.

Теоретико-методическая концепция, разработанная А. М. Леу­шиной, заключается в следующем: от нерасчлененного восприятия множества предметов детей необходимо переводить к выявлению отдельных составляющих этого множества элементов путем попар­ного сопоставления их, что представляет дочисловой период обуче­ния (усвоение отношений столько же, поровну, больше, меньше и др.). Обучение счету основывается на освоении детьми действий с множествами и базируется на сравнении двух множеств. Дети зна­комятся с числом как характеристикой численности конкретной предметной группы (множества) в сопоставлении ее с другой. В дальнейшем сравнении чисел (на наглядной основе) ребенком усваиваются последовательность и отношения между ними, что приводит к сознательному освоению счета и использованию его в вычислениях, выполнению действий при решении простых ариф­метических задач. Элементарное представление о числе формиру­ется у детей в ходе накопления ими опыта сравнения нескольких предметных групп по признаку количества, независимо от других признаков (качественных особенностей, расположения в про­странстве). На этой основе строится освоение количественного и порядкового счета, определение состава чисел из единиц и двух меньших чисел.

В методике первоначального ознакомления детей с числами, счетом, арифметическими действиями, разработанной А. М. Леу-шиной, использованы положительные стороны метода изучения чисел (воспроизведение групп предметов, применение числовых фигур и счетных карточек, знакомство с составом чисел) и метода изучения действий (число как результат счета; образование чисел на основе сравнения двух совокупностей и практического уста­новления между ними взаимнооднозначного соответствия; увели­чение или уменьшение одного из них на единицу; освоение дей­ствий сложения и вычитания на основе сформированных пред­ставлений о числах натурального ряда и навыков счетной деятельности). Согласно методике, предложенной А. М.Леуши-ной, в процессе развития количественных представлений у детей следует особое внимание уделять накоплению ими чувственного опыта, созданию сенсорной основы счетной деятельности, после­довательному обобщению детских представлений. Этим требова­ниям отвечает предложенная ею система практических упражне­ний с демонстрационным и раздаточным материалом.

Занятия рассматривались А. М. Леушиной в качестве основ­ной, ведущей формы развития количественных представлений в детском саду. С их помощью возможно освоение детьми знаний повышенной трудности, достаточно обобщенных, лежащих в «зо­не ближайшего развития». Самостоятельно приобрести их ребе­нок не в состоянии. «Попутное» усвоение их в игре или труде малоэффективно, т. к. главными в них являются цели, способы действия и результаты самой деятельности, а не формирование математических представлений.

Полноценное математическое развитие обеспечивает лишь организованная, целенаправленная деятельность на занятии, в ходе которой взрослый продуманно ставит перед детьми познава­тельные задачи, показывает адекватные пути и способы их реше­ния. В процессе обучения на занятиях необходимо реализовывать основные программные требования, математические представле­ния формировать в определенной системе. Представления и соот­ветствующие им способы действия, сформированные на заняти­ях, должны обслуживать потребности разных видов детской дея­тельности, повышая ее продуктивность и результативность.

Вопрос о методах и средствах обучения должен решаться на ос­нове и в тесной связи с содержанием и формами организации про­цесса развития количественных представлений у детей в детском саду. В содержании обучения основное внимание необходимо уде­лять формированию счетной и вычислительной деятельности, ко­торые являются основой математического развития ребенка.

Разработанная А. М. Леушиной концепция формирования ко­личественных представлений в 60—70-е гг. была существенно до­полнена за счет научно-теоретической и методической разработ­ки проблемы развития пространственно-временных представле­ний у дошкольников. Результаты научных исследований А. М. Леушиной отражены в ее докторской диссертации «Подго­товка детей к усвоению арифметического материала в школе» (1956), многочисленных публикациях, учебных пособиях, таких как «Обучение счету в детском саду» (М., 1959, 1961), «Формиро­вание элементарных математических представлений у детей до­школьного возраста» (М., 1974) и др. Обложку одного из пособий вы видите на илл. 3.

Воспитатели детских садов широко использовали разработан­ные А. М. Леушиной конспекты занятий: «Занятия по счету в дет

 
 

ском саду» (М., 1963, 1965) и «На­глядные дидактические материалы» (1965).

В дальнейшем под руководством А. М. Леушиной (по результатам дис­сертационных исследований) были разработаны содержание и методы формирования у детей пространст­венных и временных представлений, обучения измерению объема, массы; вопросы умственного и всесторонне­го развития детей в процессе освое­ния ими элементарных математиче­ских знаний Резюме по второму и третьему этапам становления методики

г В 20—50-е гг. XX в. особых различий в подходах к отбору со­держания, методов обучения и развития разными педагогами не наблюдалось (Е. И. Тихеева, Л. В. Глаголева, Ф. Н. Блехер). Предлагалось развивать способность ориентироваться в про­странстве и времени, умения различать формы и величины, числа и действия над ними, представления о мерах и делении целого на части.

г Вопрос о средствах и методах обучения решали, исходя из воз­можностей ребенка и гуманистических принципов организации его познавательной деятельности (Е. И. Тихеева, Ф. Н. Блехер и др.). Повседневная жизнь детей, жизненные ситуации рас­сматривались как источник и средство развития в предмет­но-игровой среде. Игры-занятия, занятия как индивидуаль­ные, так и в небольших группах — как средство умственного развития детей, овладения ими практическими действиями.







Дата добавления: 2015-04-16; просмотров: 2366. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия