Метод наименьших квадратов с предварительной ортогонализацией факторов (МНКО). (МОДЕЛИРОВАНИЕ)
Один из самых старых и разработанных методов моделирования по пассивным данным – метод наименьших квадратов (МНК). Которых базируется на подборе уравнения регрессии, чтобы сумма квадратов разности между уравнением и экспериментальными данными была наименьшей из всех возможных. Для произвольной системы факторов задача нахождения обратной матрицы является довольно громоздкой даже для ЭВМ, причем трудоемкость стремительно возрастает с увеличением числа факторов. Одновременно существует еще одна проблема – при признании какого-либо из найденных коэффициентов bK незначимым следует, исключив фактор XK, всю вычислительную процедуру проделать заново с самого начала. Нахождение мат. модели в МНКО и оценка ее адекватности. Достоинства и недостатки. Задача определения оценок коэффициентов bk сводится к нахождению коэффициентов Ак при ортогональных полиномах исходя из условий минимизации остаточной суммы квадратовДифференцируя по каждому коэффициенту Ак и приравнивая результат дифференцирования к нулю, получаем систему (m+1) линейных уравнений, решением которой будет выражение для расчета Ак Следовательно, вопрос о включении в уравнение каждого коэффициента Ак проверяется по критерию Стьюдента. Для этого предварительно рассчитывается среднеквадратическое отклонение очередного коэффициента Ак. В крайнем случае для оценки средней дисперсии можно взять эмпирическую дисперсию распределения выходной величины, деленную на 4 (минимальное число равнодействующих составляющих, могут дать нормальное распределение).Величина S{Ак} подставляется в выражение для расчетного критерия Стьюдента.При выполнении условия коэффициент Ак признается значимым и должен быть включен в уравнение, в противном случае – нет.Проверка адекватности уравнения экспериментальным данным осуществляется как обычно, с помощью критерия Фишера. В случае положительного решения можно перейти к отысканию оценок bk.Простейшим методом нахождения bk является метод подстановки соответствующих конкретных значений yk(Z) и приведения подобных членов. Выражения, стоящие перед каждым Zk, являются искомыми оценками коэффициентов bk. Следует обратить внимание, что в выражении в связи с обратным отсчетом номера k=m,…,1 индексы отношения xij также изменены на обратные. Другими словами, принцип старшинства индексации для первого сомножителя числителя по-прежнему соблюдается.Анализ особенностей МНКО как в теоретическом плане, так и в плане практического применения позволяет обратить внимание на следующее. 1. В условиях пассивного эксперимента оценки коэффициентов bk в отличие от Ak являются смешанными. Однако по сравнению с МНК предложенный метод позволяет точнее оценить независимых вклад каждого эффекта в соответствующий коэффициент bk. Это обстоятельство обуславливает более высокую чувствительность МНКО по сравнению с МНК, которая тем выше, чем больше количество исследуемых факторов, причем в этот список могут входить как сильно-, так и слабо- действующие факторы. 2. Эффективность метода зависит от порядка следования факторов (эффектов) друг за другом при расчете коэффициентов модели. В случае расположения их в порядке убывания по степени значимости эффективность метода возрастает. Поэтому целесообразно перед применением МНКО предварительно расположить исследуемые факторы в порядке убывания значимости по отношению к целевой функции. Для этого можно рекомендовать воспользоваться предварительной моделью, полученной с помощью ММСБ или какого-нибудь другого метода.
|