Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Билет 2. Определить понятие "количество информаци





--------------------------------------------------------------------------------------------------------
1. Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации.
--------------------------------------------------------------------------------------------------------

 

Определить понятие "количество информации" довольно сложно. В решении этой проблемы существует два основных подхода. Исторически они возникли почти одновременно. В конце 1940 г. один из основоположников кибирнетиеи американский математик Клож Шенон развил вероятностный подход к измерению количества информации, а работы по созданию ЭВМ привели к "объемному подходу".

Количество информации как мера уменьшения неопределенности
(вероятностный подход)

С точки зрения отдельного человека, ценность информации определяется тем, насколько она проясняет для него какой-либо вопрос, то есть уменьшает неопределенность ситуации. При этом количество одной и той же информации может быть оценено различными людьми по-разному. Для объективного измерения количества информации необходимо формализовать задачу.

Будем считать события равновозможными, если мы не располагаем заранее никакой информацией (статистическими данными, логическими умозаключениями и т.д.), о том, что шансы одного из событий выше или ниже, чем шансы любого другого. При этом имеется в виду, что в результате опыта обязательно наступит какое-либо событие и притом только одно.

Так, например, при подбрасывании монеты выпадение орла или решки можно считать равновозможными событиями, предполагая монету идеальной, то есть исключив из рассмотрения возможность других исходов ("зависла в воздухе", "встала на ребро"), а также влияние на исход опыта чеканки на сторонах монеты, отклонения формы реальной монеты от правильной и т. д.

Чем больше равновозможных событий, тем больше неопределенность ситуации. Минимальный размер сообщения о том, что произошло одно из двух равновозможных событий, равен одному биту. Информацию о том, что произошло первое событие, можно закодировать в двоичном алфавите нулем, а о том, что произошло второе событие – единицей.

Для уменьшения неопределенности в два раза (вместо двух возможных событий – одно реально произошедшее) требуется один бит информации. Иначе говоря, сообщение, уменьшающее неопределенность ситуации в два раза, несет один бит информации. Если его длина, подсчитанная с использованием алфавитного подхода, больше, значит сообщение несет избыточную, с точки зрения уменьшения неопределенности, информацию.

Пример. С точки зрения уменьшения неопределенности, сообщение о исходе опыта бросания идеальной монеты (два равновозможных события) несет один бит информации.

Можно рассчитать длину сообщения в двоичном алфавите, необходимую для передачи информации. Для уменьшения неопределенности ситуации в 2n раз необходимо n бит информации.

Пример. С точки зрения уменьшения неопределенности, сообщение о исходе опыта бросания двух идеальных монет (четыре равновозможных события: орел-решка; решка-орел; орел-орел; решка-решка) несет два бита информации. Действительно, 2n в данном случае равняется четырем, следовательно n = 2.

Задача нахождения n по известному значению k = 2n решается нахождением логарифма числа k по основанию 2, поэтому, для того, чтобы закодировать информацию, уменьшающую неопределенность в k раз, необходимо log2k бит информации. Приведем таблицу некоторых двоичных логарифмов, являющихся целыми числами. n log2k

Пример. С точки зрения уменьшения неопределенности, сообщение о исходе опыта бросания точечного объекта на шахматную доску (равновозможные события - попадания в одну из 64 клеток) несет 6 бит информации. Действительно, k в данном случае равняется 64, log264 = 6. Минимальная длина двоичного сообщения также будет равна 6. Подробнее: номер клетки доски по вертикали можно закодировать целым числом от 0 до 7. Для этого требуется 3 двоичных разряда (см. Системы счисления). Еще 3 разряда нужны для того, чтобы закодировать номер клетки доски по горизонтали, 3+3=6. Можно также просто пронумеровать все клетки числами от 0 до 63. Для этого опять-таки потребуется 6 разрядов.

Если используется алфавит, состоящий не из двух, а из 2p знаков, то каждый знак может нести информацию, уменьшающую неопределенность ситуации в 2p раз. Таким образом, сообщение из m знаков позволяет уменьшить неопределенность в (2p)m = 2pm раз, то есть его информационный объем равен m·p бит, что согласуется с результатом, полученным при использовании алфавитного подхода.

Пример. Пусть для кодирования сообщения о попадании точечного объекта на клетку шахматной доски используется алфавит из 8 символов (2p = 8, следовательно p = 3). Сообщение уменьшает неопределенность в 64 раза, следовательно 2pm = 23m = 64, отсюда 3m = log264 = 6; m = 2, то есть для кодирования информации попадании точечного объекта на клетку шахматной доски потребуется сообщение из двух знаков восьмисимвольного алфавита. Действительно, в первом знаке сообщения можно закодировать, например, информацию о горизонтали клетки, а во втором — о вертикали. В общепринятой шахматной нотации фактически используется указанный способ именования клеток, только для удобства чтения первый символ сообщения записывается как буква, а второй - как цифра. С математической точки зрения ничто не мешает обозначать клетки a1 и h8 как aa и hh или 11 и 88, используя только 8 символов.







Дата добавления: 2015-04-19; просмотров: 602. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия