Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка значимости уравнения линейной регрессии по критерию Фишера





Цель работы. По данным таблицы 1.1 оценить на уровне α = 0.05 значимость уравнения регрессии ŷ(x) = 1,034х-0,196, построенного в лабораторной работе № 1.1.

Ход работы: После того как найдено уравнение линейной регрессии, проводится оценка значимости уравнения в целом, так и отдельных его параметров.

Заполняем столбцы таблицы (y i -ӯ) и (ŷ i -y i). Уравнение парной регрессии значимо с уровнем значимости α, если выполняется следующее неравенство:

где Fγ; 1; n- 2 – значения квантиля уровня γ F-распределения с числами степеней свободы k1 = 1 и k2 = n – 2.

Qr (сумма квадратов, обусловленная регрессией) и Q ( остаточная сумма квадратов, характеризующая влияние неучтенных факторов )e определяются выражениями:

 

Где Q-общая сумма квадратов отклонений зависимой переменной от средней

Рис. 1.6. Вычисление величины F – критерия

Вывод: в ходе вычисления получены следующие значения Qe =27,3698, Qr =2836,99. Определяем величину F-критерия и получаем: F =2073,98. Табличное значение для n-2 степеней свободы = 4,35. 2073,98> 4,35 и получаем:

Так как F>F(s;1;n-2) уравнение регрессии y^=-0,91112х-3,42498 значимо с уровнем значимости s=0,05  
 
 

 

 







Дата добавления: 2015-06-15; просмотров: 465. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия