Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка значимости уравнения линейной регрессии по критерию Фишера





Цель работы. По данным таблицы 1.1 оценить на уровне α = 0.05 значимость уравнения регрессии ŷ(x) = 1,034х-0,196, построенного в лабораторной работе № 1.1.

Ход работы: После того как найдено уравнение линейной регрессии, проводится оценка значимости уравнения в целом, так и отдельных его параметров.

Заполняем столбцы таблицы (y i -ӯ) и (ŷ i -y i). Уравнение парной регрессии значимо с уровнем значимости α, если выполняется следующее неравенство:

где Fγ; 1; n- 2 – значения квантиля уровня γ F-распределения с числами степеней свободы k1 = 1 и k2 = n – 2.

Qr (сумма квадратов, обусловленная регрессией) и Q ( остаточная сумма квадратов, характеризующая влияние неучтенных факторов )e определяются выражениями:

 

Где Q-общая сумма квадратов отклонений зависимой переменной от средней

Рис. 1.6. Вычисление величины F – критерия

Вывод: в ходе вычисления получены следующие значения Qe =27,3698, Qr =2836,99. Определяем величину F-критерия и получаем: F =2073,98. Табличное значение для n-2 степеней свободы = 4,35. 2073,98> 4,35 и получаем:

Так как F>F(s;1;n-2) уравнение регрессии y^=-0,91112х-3,42498 значимо с уровнем значимости s=0,05  
 
 

 

 







Дата добавления: 2015-06-15; просмотров: 465. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия