Фактор 5
ql9. Я думаю, что авиакомпании X необходимо представить себя в визуальном плане более современно. ql3. Мне нравится, как в настоящее время авиакомпания X представлена визуально широкой общественности (в плане цветовой гаммы и фирменного стиля). ql5. Мы выглядим «вчерашним днем» по сравнению с другими авиакомпаниями.
Наиболее сложной задачей при проведении факторного анализа является интерпретация полученных факторов. Здесь не существует какого-либо универсального решения: в каждом конкретном случае, аналитик использует имеющийся практический опыт для того, чтобы понять, почему факторная модель относит ту или иную переменную к данному конкретному фактору. Бывают случаи (особенно при малом числе хорошо формализованных переменных), когда образованные факторы являются очевидными и различия между переменными видны невооруженным глазом. В такой ситуации можно обойтись без факторного анализа и разбить переменные на группы вручную. Однако эффективность и мощь факторного анализа проявляются в сложных и нетривиальных случаях, когда переменные нельзя заранее классифицировать, а их формулировки запутаны. Тогда большой исследовательский интерес будет вызывать классификация переменных именно на основании мнений респондентов, что позволит выявить то, как сами опрошенные поняли тот или иной вопрос. Приводим рекомендации, которые помогут вам при затруднении интерпретировать результаты факторного анализа. Когда это возможно и приемлемо для целей исследования, следует формализовать переменные до проведения факторного анализа. Это позволит аналитику заранее сделать предположения о разделении совокупности имеющихся переменных на группы. Задача исследователя при интерпретации результатов факторной матрицы в данном случае упростится, так как он уже не будет начинать «с чистого листа». Его задача сведется к проверке ранее выдвинутых гипотез о принадлежности той или иной переменной к конкретной группе. Иногда возникают случаи, когда переменная, отнесенная SPSS к конкретному фактору, логически никак не связана с остальными переменными, составляющими тот же фактор. Можно пересчитать факторную модель без отсечения незначимых коэффициентов (как в примере на рис. 5.40) и посмотреть, с каким еще фактором данная нелогичная переменная коррелирует практически с той же силой, как с фактором, к которому она была отнесена автоматически. Например, переменная Z имеет коэффициент корреляции с фактором 1, равный 0,505, а с фактором 2 она коррелирует с коэффициентом 0,491. SPSS автоматически относит данную переменную к тому фактору, с которым выявлена наибольшая корреляция, не учитывая при этом, что с другим фактором данная переменная коррелирует практически с той же силой. Именно в такой ситуации (при небольшой разнице в коэффициентах корреляции) можно попробовать отнести переменную Z к фактору 2, и если это окажется логичным, рассматривать ее в группе переменных из второго фактора. Можно вручную сократить число извлекаемых факторов, что облегчит задачу исследователя при интерпретации результатов факторного анализа. Однако необходимо иметь в виду, что такое сокращение снизит гибкость факторной модели и даже может привести к ситуации, когда переменные будут ложно разделены на неверные, с практической точки зрения, группы. Также снижение числа извлекаемых факторов неизбежно снизит и долю однозначно классифицированных факторов. В качестве варианта предыдущего решения можно предложить объединить два или более факторов с небольшими количествами входящих в них переменных. Такая группировка, с одной стороны, позволит снизить число интерпретируемых факторов, а с другой — облегчит понимание малочисленных факторов. Если исследователь зашел в тупик и никакие средства не помогают объяснить принадлежность той или иной переменной к конкретному фактору, остается применить другую статистическую процедуру (например, кластерный анализ). Вернемся к нашим пяти факторам. Задача их описания и объяснения представляется не очень сложной. Так, можно заметить, что утверждения, входящие в первый фактор (q2, q3, q23, ql4, qlO, ql, q21, q5 и ql6), являются общими, то есть касаются всей авиакомпании и описывают отношение к ней со стороны авиапассажиров. Единственное исключение составила переменная q5, имеющая отношение скорее ко второму фактору. Коэффициент корреляции с фактором 2 — 0,355 (см. рис. 5.40), что позволяет отнести его в данную группу из соображений логики. Фактор 2 (ql2, qll, q6, q8, q7 и q4) описывает отношение к авиакомпании X со стороны сотрудников. Третий фактор (ql7, q20 и ql8) описывает отношение респондентов к изменениям в авиакомпании (в него попали все утверждения, имеющие корень «мен» — от слова «изменение»). Четвертый фактор (q9, q22 и q24) описывает отношение респондентов к имиджу авиакомпании. Наконец, пятый фактор (ql9, ql3 и ql5) объединяет утверждения, характеризующие отношение респондентов к визуальному образу авиакомпании X. Таким образом, мы получили пять групп утверждений, описывающих текущую конкурентную позицию компании X на международном рынке авиаперевозок. На основании проведенного интерпретационного (семантического) анализа можно присвоить данным группам (факторам) следующие определения. ■ Фактор 1 характеризует общее положение авиакомпании X в глазах ее клиентов. ■ Фактор 2 характеризует внутреннее состояние авиакомпании X с точки зрения ее сотрудников. ■ Фактор 3 характеризует изменения, происходящие в авиакомпании X. ■ Фактор 4 характеризует имидж авиакомпании X. ■ Фактор 5 характеризует визуальный образ авиакомпании X. После того как мы успешно интерпретировали все полученные факторы, можно считать факторный анализ завершенным и удавшимся. Далее мы покажем, как можно использовать результаты факторного анализа для построения разрезов. Вспомним о том, что мы сохранили факторные рейтинги (то есть принадлежность каждого респондента к определенному фактору) в исходном файле данных в виде новых переменных. Эти переменные имеют имена типа: facX_Y, где X — это номер фактора, a Y — порядковый номер факторной модели. Если мы строили факторную модель дважды и в результате в первый раз было извлечено три фактора, а во второй — два, имена переменных будут следующими: ■ facl_l, fac2_l, fac3_l (для трех факторов из первой построенной модели); ■ facl_2, fac2_2 (для двух факторов из второй модели). В нашем случае будет создано пять новых переменных (по числу извлеченных факторов). Эти факторные рейтинги в дальнейшем могут использоваться, например, для построения разрезов. Так, если необходимо выяснить, каким образом респонденты — мужчины и женщины — оценивают различные стороны деятельности авиакомпании X, это можно сделать при помощи анализа факторных рейтингов. Наиболее частый способ использования факторных рейтингов в дальнейших расчетах — это ранжирование и последующее разделение вновь созданных переменных, обозначающих извлеченные факторы, на четыре квартиля (25%-проценти-ля). Такой подход позволяет создать новые переменные с порядковой шкалой, описывающие четыре уровня каждого фактора. В нашем случае для утверждений, составляющих фактор 2, такими уровнями будут: не согласен (состояние внутренних дел компании не удовлетворяет сотрудников), скорее не согласен (оценка внутренней ситуации в компании ниже среднего), скорее согласен (оценка выше среднего), согласен (оценка отлично). Чтобы создать переменные, по которым далее будут группироваться респонденты, вызовите меню Transform ► Rank Cases. В открывшемся диалоговом окне (рис. 5.41) из левого списка выберите переменную, содержащую факторные рейтинги для фактора 2 (fac2_l), и поместите ее в поле Variables. Далее в области Assign Rank I to выберите пункт Smallest value, в нашем случае это означает, что первую группу (не согласен) составят респонденты, оценивающие состояние внутренних дел авиакомпании как плохое. Соответственно группы 2, 3 и 4 будут определены для категорий скорее не согласен, скорее согласен и согласен соответственно.
Щелкните на Rank Types ► Types, отмените установленный по умолчанию параметр Rank и вместо него выберите Ntiles с предустановленным числом групп, равным 4 (рис. 5.42). Щелкните на кнопке Continue и затем в главном диалоговом окне на ОК. Данная процедура создаст в файле данных новую переменную nfac2_l (2 означает второй фактор), распределяющую респондентов на четыре группы.
Все респонденты в выборке характеризуются положительным, скорее положительным, скорее отрицательным или отрицательным отношением к текущему состоянию дел в авиакомпании X. Для повышения наглядности рекомендуется присвоить метки каждому из выделенных четырех уровней; можно переименовать и саму переменную. Теперь вы можете проводить перекрестный анализ при помощи новой порядковой переменной, а также строить другие статистические модели, предусмотренные в SPSS. Ниже будет показано, как использовать результаты построения факторной модели в кластерном анализе. Для иллюстрации возможностей практического использования новой переменной проведем перекрестный анализ влияния пола респондентов на их оценку текущего состояния дел в авиакомпании X (рис. 5.43). Как следует из представленной таблицы, респонденты-мужчины в целом склонны ставить более низкие оценки рассматриваемому параметру авиакомпании по сравнению с женщинами. Так, в структуре оценок очень плохо, плохо и удовлетворительно доля мужчин преобладает; в оценках очень хорошо, напротив, преобладают женщины. При переходе в каждую следующую (более высокую) категорию оценок доля мужчин равномерно убывает, а доля женщин, соответственно, возрастает. Тест %2 показывает, что выявленная зависимость является статистически значимой.
|