Студопедия — Вторичный транспорт
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вторичный транспорт






Вторичный транспорт - это переход различных частиц и молекул воды за счет ранее запасенной (потенциальной) энергии. Потенциальная энергия создается в виде электрического и концентрационного градиентов, что обеспечивает транспорт веществ через клеточную мембрану нейронов. Ко вторичному относятся следующие виды транспорта.

А. Диффузия. Согласно законам диффузии, частицы перемещаются из области с высокой концентрацией в область с низкой концентрацией. Частицы с одноименными электрическими зарядами отталкиваются, с разноименными - притягиваются друг к другу. Направление диффузии определяется взаимодействием электрического и концентрационного (химического) градиентов. Если частицы не заряжены, то направление их диффузии определяется только градиентом концентрации. Скорость диффузии зависит от проницаемости клеточной мембраны, а также градиента концентрации для незаряженных частиц; электрического и концентрационного градиентов для заряженных частиц. Направления действия электрического и концентрационного градиентов могут не совпадать. Например, ионы Na+ в процессе возникновения возбуждения продолжают поступать в клетку, когда она внутри уже заряжена положительно. Этот переход ионов обеспечивается концентрационным градиентом вопреки электрическому градиенту. Совокупность химического (концентрационного) и электрического градиентов называют электрохимическим градиентом. Различают простую и облегченную диффузии и осмос как частный случай диффузии.

1. Простая диффузия осуществляется либо непосредственно через липидный бислой, либо через каналы. Заряженные частицы движутся согласно электрохимическому градиенту, а незаряженные - согласно только химическому градиенту. Через липидный бислой проходят жирорастворимые частицы. Если они находятся в воде по одну сторону мембраны, то могут внедряться в липидную оболочку благодаря тепловому движению (при этом необходимо освободиться от гидратной оболочки). Частицы-неэлектролиты обычно легко освобождаются от гидратной оболочки (разрыв водородных связей). Естественно, с уменьшением молекулярной массы способность перехода частиц через мембрану возрастает. Примером простой диффузии через липидный слой может служить диффузия малых незаряженных полярных молекул: этанола, кислорода, углекислого газа, стероидных гормонов и других липидов, тироксина, мочевины, а также чуждых клетке веществ, в частности ядов и лекарственных средств.

Этот процесс происходит слишком медленно и плохо контролируется.

В ходе эволюции сформировались специальные каналы, по которым могут проходить различные частицы, причем ионы очень быстро - за 0,5-1 мс. Каналы заполнены водой, и кроме ионов через них могут проходить малые молекулы неэлектролитов (этанол, мочевина), заряженные молекулы. Диаметр этих каналов 0,3-0,8 нм. Скорость диффузии определяется электрохимическим градиентом и проницаемостью клеточной мембраны для данного вещества. С течением времени скорость простой диффузии изменяется мало, пока существует движущая сила (электрический или концентрационный градиент), так как по одному и тому же каналу или через липидный бислой после прохождения одной частицы сразу же может следовать другая (подробнее о каналах см. раздел 2.6.4).

2. Облегченная диффузия осуществляется также согласно концентрационному градиенту и обеспечивает перенос веществ, способных образовывать комплексы с молекулами—переносчиками мембранных белков. Переносчик должен свободно переходить с одной стороны мембраны на другую. Этот транспорт осуществляется очень быстро, поскольку переносчик облегчает переход транспортируемого вещества через мембрану. Движущей силой является градиент транспортируемого вещества. С помощью простой диффузии не могут проходить через мембрану даже небольшие полярные молекулы: моносахариды, аминокислоты. Облегченная диффузия имеет ряд особенностей:

•наличие специфических переносчиков для отдельных или нескольких веществ, близких по строению. Вещества, имеющие сходные по строению молекулы, могут переноситься одним и тем же переносчиком и конкурировать за переносчика;

•у молекулы-переносчика может быть особый канал, пропускающий вещество только одного определенного типа;

•с увеличением концентрации вещества с одной стороны мембраны скорость облегченной диффузии возрастает только до определенного предела в отличие от простой диффузии. Прекращение нарастания облегченной диффузии при увеличении концентрации вещества свидетельствует о том, что все переносчики уже заняты, - явление насыщения. Выделяют специфическое стимулирование и ингибирование облегченной диффузии: например, флоридзин, введенный в просвет кишечника, специфически подавляет транспорт Сахаров, не затрагивая переноса аминокислот; инсулин активирует перенос глюкозы в клетки организма. Переносчиками являются белковые молекулы, которые совершают челночные движения через мембрану либо встраиваются в нее. В последнем случае образуется канал, по которому проходят транспортируемые вещества, в основном сахара, аминокислоты.

В случае предполагаемых челночных движений белковых молекул-переносчиков возникает вопрос: какая сила обеспечивает транспорт самих переносчиков? Если это одностороннее движение, то оно быстро прекратится после уравнивания концентрации самих переносчиков по обе стороны клеточной мембраны. На этот вопрос ответа пока нет. Мы полагаем, что возможны два механизма. Во-первых, за счет создания градиента концентрации самого переносчика, с помощью концентрационного градиента транспортируемого вещества. Если, например, концентрация глюкозы или аминокислоты больше вне клетки, чем в клетке, то она может переходить в клетку согласно своему градиенту концентрации. Образование комплекса молекул глюкоза - переносчик лишь улучшает прохождение глюкозы через мембрану согласно концентрационному градиенту глюкозы. Движущей силой является концентрационный градиент глюкозы. На внутренней стороне клеточной мембраны комплекс распадается, поэтому концентрация молекул-переносчиков возрастает и они, согласно своему концентрационному градиенту, переходят на наружную сторону клеточной мембраны, снова соединяются с глюкозой и ускоряют ее переход в клетку. Во-вторых, челночные движения переносчика могут осуществляться с помощью ионов К+. Известно, что К+ постоянно диффундирует из клетки согласно концентрационному градиенту. При этом в клетке может образоваться комплекс ион К+ - молекула переносчика, который и перейдет с внутренней стороны клеточной мембраны на наружную сторону. В этом случае движущей силой является концентрационный градиент иона К+, который затем переносится в клетку Na/K-помпой с непосредственной затратой энергии, т.е. первично активно. Напомним, что энергия здесь затрачивается только на транспорт иона Na-1' - экономичность транспорта веществ. Переносчик транспортируется вторично активно, если не будет работать Na/K-помпа, челночные движения переносчика согласно такому представлению прекратятся.

3. Осмос - это частный случай диффузии: движение воды (растворителя) через полупроницаемую мембрану в область с большей концентрацией частиц, т.е. с большим осмотическим давлением. Осмотическое давление - это диффузионное давление, обеспечивающее движение растворителя через полупроницаемую мембрану. Измеряется минимальной величиной механического давления на раствор (например, с помощью поршня), препятствующего движению растворителя через полупроницаемую мембрану. Осмотическое давление одномолярного раствора чрезвычайно велико - 22,4 атм, в плазме крови оно существенно ниже - 7,6 атм, несколько больше внутри клетки, что и обеспечивает ее упругость вследствие поступления воды в клетку и растяжения ее мембраны. Осмос продолжается до выравнивания осмотического давления по обе стороны полупроницаемой мембраны или выравнивания осмотического давления и гидростатического противодавления. Поэтому при подавлении метаболизма клетки быстро набухают, так как внутри клетки осмотическое давление сохраняется повышенным: внутрь клеток поступает вода и они становятся более упругими. Вода поступает в клетку через водные каналы и временные поры, образующиеся между молекулами липидов и при смещении белков. Через водные каналы могут проходить также малые незаряженные молекулы: кислород, углекислый газ, этанол, мочевина.

Б. Натрийзависимый транспорт. В этом случае энергия затрачивается на создание градиента натрия. Различают два варианта данного механизма транспорта.

Первый вариант: направление движения транспортируемого вещества совпадает с направлением движения натрия согласно его электрохимическому градиенту (симпорт). Глюкоза связывается с белком-переносчиком мембраны, последний соединяется с ионом Na+, a Na+, согласно концентрационному и электрическому градиентам, диффундирует в клетку и несет с собой глюкозу. На внутренней стороне клеточной мембраны комплекс распадается, ион Na+ выводится помпой с непосредственной затратой энергии из клетки в интерстиций вопреки электрохимическому градиенту - первично активно. С помощью натриевого механизма обеспечивается обратный захват (реабсорбция) медиатора в пресинаптическую терминаль из синаптической щели в синапсах ЦНС. Транспорт веществ с помощью иона Na+ осуществляется согласно законам диффузии для ионов Na+. Транспортируемое вещество при этом может поступать в клетку вопреки собственному концентрационному градиенту. Движущей силой является электрохимический градиент ионов Na4'. Глюкоза вместе с ионом Na+ попадает в клетку даже в том случае, если ее концентрация в клетке больше, чем в среде, если, конечно, электрохимический градиент Na+ превосходит концентрационный градиент глюкозы.

Второй вариант: перемещение транспортируемых частиц направлено в противоположную движению ионов Na+ сторону - это антипорт (противотранспорт). С помощью этого обменного механизма регулируется, например, содержание ионов Са2+ в клетке, рН внутри клетки за счет выведения иона Н+ в обмен на внеклеточный ион Na+. Внутриклеточная концентрация иона Ca2+ на несколько порядков ниже внеклеточной. Натриевый концентрационный градиент участвует в выведении иона Са2+ из клетки. Об этом свидетельствует, в частности, следующий факт. Выведение иона Ca2+ из клетки снижается, если удалить из внеклеточной среды ион Na+. Это позволяет предположить, что ион Са2+ выводится из клетки в обмен на поступающий в нее ион Na+ и противоположно направленные потоки этих ионов сопряжены друг с другом; обеспечивается данный транспорт переносчиком-обменником. Исходным источником энергии этого процесса опять является градиент Na+, который в конечном счете формируется за счет АТФ-зависимого активного транспорта ионов Na+. Поэтому во всех случаях, когда ток ионов Na+ в клетку уменьшается, снижается и выведение ионов Са2+ из клетки. Это наблюдается в следующих случаях: при ингибировании Na/K-АТФазы, уменьшении внеклеточной концентрации ионов Na+- и в бескалиевой среде (когда Na+ выводится недостаточно из клетки). При этом Na/Ca-обменник блокируется, в результате чего увеличивается внутриклеточная концентрация ионов Ca2+.

Однако конкретный механизм работы переносчика-обменника не ясен. Переносчик может транспортировать ионы Са2+ и Н+ вопреки их электрическим и концентрационным градиентам только в том случае, если сам переносчик имеет собственный градиент - его концентрация на внутренней стороне клетки больше, чем на наружной. Этот градиент должен постоянно поддерживаться, иначе перенос ионов Са2+ и Н+ прекратится. Мы полагаем, что выведение ионов Са2+ и Н+ из клетки в результате диффузии иона Na+ в клетку (противотранспорт) осуществляется следующим образом. Ион Na+ постоянно диффундирует в клетку согласно своему электрохимическому градиенту и транспортирует с собой (в комплексе) молекулы-переносчики, что и ведет к созданию их концентрационных градиентов. Ионы Са2+ и Н+ на внутренней стороне клетки соединяются со своими переносчиками и транспортируются из клетки в виде комплексов согласно градиентам своих переносчиков. Именно поэтому, например, блокада Na/K-насоса ведет к накоплению ионов Са2+ в клетках (транспорт ионов Ca24' из клетки уменьшается). Это примеры вторичного транспорта вещества за счет первичного транспорта иона Na+, который с помощью помпы выводится из клетки. Переносчики совершают челночные движения за счет работы Na/K-насоса - вторично активно и транспортируют с собой ионы Са2+ и Н+.

В. Транспорт веществ из кровеносных сосудов в интерстиций ЦНС осуществляется с помощью диффузии, осмоса, фильтрации и трансцитоза. Фильтрация - переход раствора через полупроницаемую мембрану (стенку сосуда) под действием градиента гидростатического давления между жидкостями по обе стороны этой мембраны. Градиент гидростатического давления создается либо деятельностью сердца (фильтрация в артериальном конце капилляра всех органов и тканей организма, а также образование первичной мочи в почке), либо гладкими мышцами пищеварительного тракта и мышечного пресса, обеспечивающих повышение гидростатического давления в полости желудка и кишечника, что способствует всасыванию веществ в кровь.

Таким образом, механизмы вторичного транспорта веществ весьма разнообразны. Вторичный транспорт ионов осуществляется, как правило, с помощью простой диффузии через специальные ионные каналы.







Дата добавления: 2015-08-17; просмотров: 868. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия