Студопедия — Минимальное и действительное флегмовое число
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Минимальное и действительное флегмовое число






 

Расчет минимального флегмового числа. При заданном составе дистиллята хР величина отрезка В (см. рис. 17), отсекаемого рабочей линией укрепляющей части колонны на оси ординат, зависит только от флегмового числа R, так как . С уменьшением R отрезок В увеличивается (В" > В) и рабочая линия как бы поворачивается вокруг точки а по часовой стрелке, занимая последовательно положения ab, ab" и т. д. Однако величину R можно уменьшать только до некоторого предела, определяемого движущей силой процесса массопередачи между жидкой и паровой фазами.

Движущая сила, выраженная в концентрациях паровой фазы, изображается на диаграмме ух вертикальным отрезком между данной точкой на рабочей линии и линией равновесия. Например, при рабочей линии ab в точке ввода питания (xF) движущая сила равна y*F – уF и изображается отрезком b"'b. С уменьшением R точка b перемещается по вертикали, соответствующей абсциссе точки, которая отвечает составу xF, и движущая сила снижается до тех пор, пока не обратится в нуль (точка b"'). При этом рабочая линия ab "' отсекает на оси ординат максимальный отрезок В"' = Вmax, которому при заданном хР соответствует минимальное флегмовое число Rmln:

.

Отметим, что в некоторой точке на вертикали, отвечающей xF и лежащей выше линии равновесия, рабочие линии пересечься не могут, так как в этом, случае движущая сила процесса имела бы отрицательное значение, что противоречит физическому смыслу.

С увеличением R отрезки В уменьшаются и рабочая линия поворачивается вокруг точки а против часовой стрелки. Очевидно, нижнее предельное положение рабочих линий должно соответствовать совпадению точки их пересечения с диагональю диаграммы (точка b'). При этом угол наклона рабочих линий к оси абсцисс равен 45°, А = А' = 1 и В = В' = 0, что возможно, как следует из выражений для В и В', только при бесконечно большом флегмовом числе (R = ¥).

Действительное (рабочее) флегмовое число R д, при котором работает колонна, должно находиться в пределах Rmin и R = ¥. Исходной величиной для выбора действительного флегмового числа является Rmin, значение которого можно найти расчетом.

Для определения Rmin проведем из точки b " (см. рис. 17) горизонтальный отрезок b'е до пересечения с ординатой точки а. Тангенс угла наклона рабочей линии укрепляющей части колонны при Rmin равен отношению катетов ае и b"e треугольника ab"'e, причем катет ае = уРyf = хР – y'F, а катет b"'е = хРxF. Следовательно

. (А)

Вместе с тем, согласно уравнению (14), при минимальном флегмовом числе

. (Б)

Сопоставляя выражения (А) и (Б), получим

. (16)

Расчет действительного флегмового числа. Рациональный выбор действительного флегмового числа представляет собой сложную задачу. Это объясняется тем, что флегмовое число R определяет в конечном счете размеры аппарата и расходы теплоносителей (греющего агента в кипятильнике, охлаждающей воды в дефлегматоре). Следовательно, от величины R зависят капитальные затраты и эксплуатационные расходы на ректификацию.

Эксплуатационные расходы, определяемые расходом теплоносителя, возрастают прямо пропорционально величине R (рис. 18, кривая 1). Более сложной является зависимость капитальных затрат от величины флегмового числа. С увеличением R возрастает движущая сила процесса и уменьшается необходимое число теоретических и соответственно действительных ступеней. В итоге при некотором флегмовом числе рабочий объем колонны станет минимальным и, следовательно, минимальной будет ее стоимость. Поэтому зависимость капитальных затрат от флегмового числа имеет минимум (кривая 2). Отсюда следует, что суммарные затраты будет также иметь минимум, который не совпадает с минимумом капитальных затрат. Зависимость суммарных затрат З (в рублях) от флегмового числа изображается на рисунке кривой 3. Этому минимуму суммарных затрат соответствует оптимальное значение действительного флегмового числа (R опт).

В связи со сложностью технико-экономического расчета R oпm выбор действительного флегмового числа R д часто производят приближенно. Так, при расчетах задаются отношением действительного флегмового числа к минимальному. Это отношение носит название коэффициента избытка флегмы:

.

В большинстве случаев значения этого коэффициента колеблются ориентировочно в пределах . Однако если отсутствуют данные о величинах коэффициента избытка флегмы для систем, близких по свойствам к разделяемой, то выбор определяется главным образом инженерной интуицией и является грубо приближенным.

Зависимость между флегмовым числом, высотой колонны и расходом теплоносителя (греющего пара). Рассмотрим, как связана величина флег-мового числа с рабочей высотой колонны и расходом тепла на ректификацию в двух предельных случаях: R = Rmin и R = ¥. Рабочая высота колонны пропорциональна числу теоретических ступеней изменения концентрации, которое определяется построением «ступенек» между рабочими линиями и равновесной линией.

При R = ¥ рабочие линии совпадают с диагональю диаграммы и движущая сила процесса или является наибольшей, а необходимое число теоретических ступеней – наименьшим (рис. 19, а). Количество действительных ступеней разделения пропорционально числу теоретических ступеней. Таким образом, при R = ¥ потребовалась бы наименьшая рабочая высота колонны. Однако флегмовое число R = Ф / Р может стать равным бесконечности только при Р = 0. Это означает, что при R = ¥ отбора дистиллята нет, и вся жидкость, полученная в результате полной конденсации паров в дефлегматоре, возвращается в колонну в виде флегмы. В данном случае колонна работает «на себя», без выдачи продукта, что в нормальных производственных условиях, естественно, исключается. Подобный режим работы колонны удобен только для исследовательских целей.

С увеличением R возрастает количество жидкости, которое необходимо испарить в кипятильнике. При R = ¥ требуется испарить максимально возможное количество жидкости. Следовательно, в этом случае расход греющего пара наибольший.

При Rmin (рис. 19, б), когда рабочие линии пересекаются с линией равновесия, в точке пересечения движущая сила равна нулю. Значит, для того чтобы достигнуть концентраций фаз, соответствующих их составам на питающей тарелке, потребовалась бы бесконечно большая поверхность контакта фаз, т. е. бесконечно большое число «ступенек» – теоретических ступеней разделения. Таким образом, при Rmin разделение возможно только в гипотетической ректификационной колонне бесконечно большой высоты. При этом расход греющего пара, которые при прочих равных условиях пропорционален флегмовому числу, т. к. G = Р (R + 1), будет наименьший.

На основе проведенного анализа можно заключить, что с увеличением флегмового числа высота аппарата уменьшается, а расход греющего пара возрастает. Вместе с тем с увеличением R возрастает количество орошающей жидкости и диаметр аппарата (при прочих равных условиях) увеличивается.

 







Дата добавления: 2015-08-27; просмотров: 4891. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия