Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тепло- и массообмен при охлаждении пищевых продуктов





Охлаждение – это первый обязательный этап холодильной обработки. Охлаждение – это отвод теплоты от пищевых продуктов с понижением их температуры, не ниже криоскопической температуры.

Процесс теплообмена неразрывно связан с распределением температуры внутри тела, так же как процесс массообмена с распределением влажности. Совокупность мгновенных значений температуры во всех точках тела называется температурным полем t = f (х, y, z, t). Температурные поля могут быть стационарными и нестационарными. Если температурное поле меняется во времени, то оно называется нестационарным. В случае процессов в холодильной обработке можно рассматривать одномерное температурное поле t = f (х, t). Температурное поле продукта зависит от размера, конфигурации и теплофизических свойств объекта, от условий отвода теплоты. В анализе теплофизических процессов холодильной технологии и соответствующих тепловых расчетах, очень нужной величиной является среднеобъемная температура тела tv. Среднеобъемной температурой тела, температурное поле которого непостоянно, называется температура, которая может быть достигнута, если объект поместить в адиабатные условия:

(10.1)

где tц, tп – температуры центра и поверхности объекта соответственно;

y – коэффициент, определяемый формой тела.

Ниже приведены значения y для различных форм тела и условий охлаждения:

 

Форма тела Охлаждение в воздухе Охлаждение в жидкости
y y
Пластина 1/3 1/4
Цилиндр 1/2 2/5
Шар 3/5 1/2

 

Однако использование уравнения не всегда удобно, так как необходимо знать температуру поверхности объекта tn, что соответствует граничным условиям первого рода. При граничных условиях третьего рода, когда известны температура среды tc и коэффициент теплоотдачи a:

(10.2)

где Bi = al/l – критерий Био;

n – коэффициент, зависящий от метода охлаждения;

l – половина определяющего размера продукта (м);

a – коэффициент теплоотдачи от поверхности продукта к охлаждающей среде, Вт/(м2×К);

l – коэффициент теплопроводности продукта Вт/(м2×К).

При воздушном охлаждении 3³ n ³1 (как правило, n = 2), при охлаждении в жидкости 4 ³ n ³1 (принять n = 3).

Тепло, отводимое при охлаждении. При подборе холодильно­го оборудования необходимо знать количество теплоты, которая от­водится от материала при его охлаждении. Эту задачу можно ре­шить, используя три подхода.

Первый подход основан на законе Фурье и сводится к определе­нию количества теплоты, передаваемой теплопроводностью от внут­ренних слоев к внешней поверхности. По существу это внутренняя задача теплообмена.

Расчетная формула где q плотность теплового пото­ка (внутреннего); – градиент температуры.

Второй подход основан на законе Ньютона-Рихмана и сводится к определению количества теплоты, передаваемой от поверхности тела к окружающей среде. По существу это внешняя задача (гра­ничное условие третьего рода).

Расчетная формула где q / плотность теплового потока (внешнего); – разность температур на поверхности объекта и в среде.

Третий подход основан на учете удельной теплоемкости объек­та, массы, а также на изменении его среднеобъемной температуры.

Расчетная формула

, (10.3)

или

(10.4)

где Q – общее количество теплоты, кДж;

tvнач – начальная среднеобъемная температура, 0С;

tvкон – конечная среднеобъемная температура, 0С;

G – масса материала, кг;

с – удельная теплоемкость материала, кДж/кгК;

iнач, iкон – соответственно начальная и конечная энтальпия материала, кДж/кг.

Как правило, при расчетах процессов холодильной обработки используют третий путь, т.е. ведут расчет по массе, удельной теп­лоемкости и разности среднеобъемных температур, однако вводят некоторые дополнения: учитывают внутренние тепловыделения тка­ней животных, а также испарение и конденсацию (десублимацию) влаги на охлаждающих приборах. В этом случае

(10.5)

где tvнач, tvкон – соответственно среднеобъемная начальная и ко­нечная температура продукта, 0С;

с – удельная теплоемкость про­дукта в интервале температур tvнач – tvкон, кДж/(кг×К);

qд – внут­реннее тепловыделение за время охлаждения, кДж/кг;

– относительные потери влаги (усушка) в до­лях единицы;

Wи – масса испарившейся влаги, кг;

Gnp – масса про­дукта, кг;

rд, rп – соответственно удельная теплота десублимации и парообразования, кДж/кг.

Как правило, первое слагаемое этого уравнения составляет 80% от всего количества теплоты.

Массобмен при охлаждении. В процессе охлаждения неупакованных влагосодержащих продуктов испарение влаги с поверхности сопровождается потерей массы продукта, т.е. усушкой, при этом направление массопереноса совпадает с направлением переноса теплоты. Испарение способствует ускорению процесса охлаждения, но одновременно приводит к потерям массы продукта, поэтому процесс охлаждения должен быть организован в условиях, обеспечивающих минимальные потери массы (влаги).

Интенсивность и скорость охлаждения. В расчете процесса охлаждения используют среднюю и истинную интенсивность охлаждения. Средней интенсивностью охлаждения – называется отношение общего количества теплоты, отведенной от продукта Q, к продолжительности охлаждения t. Средняя интенсивность охлаждения используется при сравнительной оценке различных режимов охлаждения и расчете охлаждающих приборов.

Истинная интенсивность охлаждения находится из условия, что при простом охлаждении количество отведенной теплоты меняется так же, как температура охлаждаемого продукта, т.е. по экспоненте.

Скоростью охлаждения продукта называют отношение изменения его температуры к периоду, в течение которого произошло это изменение. Различают среднюю и истинную скорости охлаждения.

Средняя скорость охлаждения – это отношение разности начальной и конечной температур продукта к найденной продолжительности процесса. Средняя скорость охлаждения является величиной постоянной для данного процесса.

Истинная скорость охлаждения является функцией времени и с развитием процесса уменьшается. Изменение истинной скорости охлаждения определяется условиями процесса охлаждения продукта и его теплофизическими свойствами.







Дата добавления: 2015-08-27; просмотров: 703. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия