Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тепло- и массообмен при охлаждении пищевых продуктов





Охлаждение – это первый обязательный этап холодильной обработки. Охлаждение – это отвод теплоты от пищевых продуктов с понижением их температуры, не ниже криоскопической температуры.

Процесс теплообмена неразрывно связан с распределением температуры внутри тела, так же как процесс массообмена с распределением влажности. Совокупность мгновенных значений температуры во всех точках тела называется температурным полем t = f (х, y, z, t). Температурные поля могут быть стационарными и нестационарными. Если температурное поле меняется во времени, то оно называется нестационарным. В случае процессов в холодильной обработке можно рассматривать одномерное температурное поле t = f (х, t). Температурное поле продукта зависит от размера, конфигурации и теплофизических свойств объекта, от условий отвода теплоты. В анализе теплофизических процессов холодильной технологии и соответствующих тепловых расчетах, очень нужной величиной является среднеобъемная температура тела tv. Среднеобъемной температурой тела, температурное поле которого непостоянно, называется температура, которая может быть достигнута, если объект поместить в адиабатные условия:

(10.1)

где tц, tп – температуры центра и поверхности объекта соответственно;

y – коэффициент, определяемый формой тела.

Ниже приведены значения y для различных форм тела и условий охлаждения:

 

Форма тела Охлаждение в воздухе Охлаждение в жидкости
y y
Пластина 1/3 1/4
Цилиндр 1/2 2/5
Шар 3/5 1/2

 

Однако использование уравнения не всегда удобно, так как необходимо знать температуру поверхности объекта tn, что соответствует граничным условиям первого рода. При граничных условиях третьего рода, когда известны температура среды tc и коэффициент теплоотдачи a:

(10.2)

где Bi = al/l – критерий Био;

n – коэффициент, зависящий от метода охлаждения;

l – половина определяющего размера продукта (м);

a – коэффициент теплоотдачи от поверхности продукта к охлаждающей среде, Вт/(м2×К);

l – коэффициент теплопроводности продукта Вт/(м2×К).

При воздушном охлаждении 3³ n ³1 (как правило, n = 2), при охлаждении в жидкости 4 ³ n ³1 (принять n = 3).

Тепло, отводимое при охлаждении. При подборе холодильно­го оборудования необходимо знать количество теплоты, которая от­водится от материала при его охлаждении. Эту задачу можно ре­шить, используя три подхода.

Первый подход основан на законе Фурье и сводится к определе­нию количества теплоты, передаваемой теплопроводностью от внут­ренних слоев к внешней поверхности. По существу это внутренняя задача теплообмена.

Расчетная формула где q плотность теплового пото­ка (внутреннего); – градиент температуры.

Второй подход основан на законе Ньютона-Рихмана и сводится к определению количества теплоты, передаваемой от поверхности тела к окружающей среде. По существу это внешняя задача (гра­ничное условие третьего рода).

Расчетная формула где q / плотность теплового потока (внешнего); – разность температур на поверхности объекта и в среде.

Третий подход основан на учете удельной теплоемкости объек­та, массы, а также на изменении его среднеобъемной температуры.

Расчетная формула

, (10.3)

или

(10.4)

где Q – общее количество теплоты, кДж;

tvнач – начальная среднеобъемная температура, 0С;

tvкон – конечная среднеобъемная температура, 0С;

G – масса материала, кг;

с – удельная теплоемкость материала, кДж/кгК;

iнач, iкон – соответственно начальная и конечная энтальпия материала, кДж/кг.

Как правило, при расчетах процессов холодильной обработки используют третий путь, т.е. ведут расчет по массе, удельной теп­лоемкости и разности среднеобъемных температур, однако вводят некоторые дополнения: учитывают внутренние тепловыделения тка­ней животных, а также испарение и конденсацию (десублимацию) влаги на охлаждающих приборах. В этом случае

(10.5)

где tvнач, tvкон – соответственно среднеобъемная начальная и ко­нечная температура продукта, 0С;

с – удельная теплоемкость про­дукта в интервале температур tvнач – tvкон, кДж/(кг×К);

qд – внут­реннее тепловыделение за время охлаждения, кДж/кг;

– относительные потери влаги (усушка) в до­лях единицы;

Wи – масса испарившейся влаги, кг;

Gnp – масса про­дукта, кг;

rд, rп – соответственно удельная теплота десублимации и парообразования, кДж/кг.

Как правило, первое слагаемое этого уравнения составляет 80% от всего количества теплоты.

Массобмен при охлаждении. В процессе охлаждения неупакованных влагосодержащих продуктов испарение влаги с поверхности сопровождается потерей массы продукта, т.е. усушкой, при этом направление массопереноса совпадает с направлением переноса теплоты. Испарение способствует ускорению процесса охлаждения, но одновременно приводит к потерям массы продукта, поэтому процесс охлаждения должен быть организован в условиях, обеспечивающих минимальные потери массы (влаги).

Интенсивность и скорость охлаждения. В расчете процесса охлаждения используют среднюю и истинную интенсивность охлаждения. Средней интенсивностью охлаждения – называется отношение общего количества теплоты, отведенной от продукта Q, к продолжительности охлаждения t. Средняя интенсивность охлаждения используется при сравнительной оценке различных режимов охлаждения и расчете охлаждающих приборов.

Истинная интенсивность охлаждения находится из условия, что при простом охлаждении количество отведенной теплоты меняется так же, как температура охлаждаемого продукта, т.е. по экспоненте.

Скоростью охлаждения продукта называют отношение изменения его температуры к периоду, в течение которого произошло это изменение. Различают среднюю и истинную скорости охлаждения.

Средняя скорость охлаждения – это отношение разности начальной и конечной температур продукта к найденной продолжительности процесса. Средняя скорость охлаждения является величиной постоянной для данного процесса.

Истинная скорость охлаждения является функцией времени и с развитием процесса уменьшается. Изменение истинной скорости охлаждения определяется условиями процесса охлаждения продукта и его теплофизическими свойствами.







Дата добавления: 2015-08-27; просмотров: 703. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия