Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямая и обратная задача кинематики.





В робототехнике, есть две основные задачи кинематики:
прямая и обратная.

Рассмотрим эти задачи на стандартном примере манипулятора.

Прямая задача — это вычисление положения (X, Y, Z) рабочего органа манипулятора по его кинематической схеме и заданной ориентации (A1, A2… An) его звеньев (n — число степеней свободы манипулятора, A — углы поворота).

Обратная задача — это вычисление углов (A1, A2… An) по заданному положению (X, Y, Z) рабочего органа и опять же известной схеме его кинематики.

Т.о., решение прямой задачи говорит — где будет находиться рабочий орган манипулятора, при заданных углах его суставов, а обратная задача, наоборот, говорит: как нужно «вывернуться» манипулятору, чтобы его рабочий орган оказался в заданном положении.

Очевидно, что более распространённой и важной является именно обратная задача кинематики.
Но нужно иметь в виду, что эта задача редко может быть решена однозначно.
Дело в том, что хотя для углов (A1, A2,..., An) всегда существует ЕДИНСТВЕННОЕ положение (X, Y, Z) рабочего органа, но не факт, что для положения (X, Y, Z) отыщется такая же единственная комбинация углов (A1, A2,..., An).
Скорее всего, достичь заданного положения (X, Y, Z) возможно и при другой комбинации углов (A1', A2',..., An').
При решении обратной задачи аналитически, эта неоднозначность проявляется в явном виде (например, через квадратные корни).


Рассмотрим пример прямой задачи кинематики.



у нас есть манипулятор, способный работать только в одной плоскости и имеющий два сустава.
Первый сустав L1 закреплён на основании и повёрнут на угол Q1,
второй сустав L2, крепится к концу первого сустава и повёрнут относительно него на угол Q2.
Рабочий орган манипулятора находится на конце второго сустава.
Прямая задача кинематики состоит в нахождении координат рабочего органа (x, y) по заданным L1, L2, Q1, Q2.
L1 и L2 — это, соответственно, длины плеча и локтя манипулятора; определены конструкцией манипулятора.

Решение:
здесь, мы имеем две системы отсчёта — первая, связанная с точкой крепления плеча L1 — O, а вторая — с началом координат в точке крепления локтя — A.
Найдём смещение второй системы относительно первой (координаты точки A в системе отсчёта O):

 

XA = L1*cos(Q1)
YA = L1*sin(Q1)


Координаты (x, y) в системе отсчёта локтя:

 

x'' = L2*cos(Q2)
y'' = L2*sin(Q2)

 

По рисунку видно, что в системе O, локоть L2 повёрнут относительно плеча на Q1+Q2:

 

x' = L2*cos(Q1+Q2)
y' = L2*sin(Q1+Q2)


т.о.:

 

x = XA + x' = L1*cos(Q1) + L2*cos(Q1+Q2)
y = YA + y' = L1*sin(Q1) + L2*sin(Q1+Q2)

 


Теперь, рассмотрим пример обратной задачи кинематики.


тот же рисунок, но теперь нужно найти такие углы Q1 и Q2, которые позволят манипулятору с плечом L1 и локтем L2 поместить рабочий орган в заданную точку (x, y)

Проведём прямую B, соединяющую начало координат O с заданной точкой (x, y).

 

B^2 = x^2 + y^2
x = B*cos(q1)
y = B*sin(q1)


q1 — угол между осью OX и прямой B
q2 — угол между прямой B и плечом L1

отсюда:

Q1 = q1 - q2

 

q1 = arccos(x/B) или q1 = arctg(y/x)

 

, а q2 находим при помощи теоремы косинусов, которая говорит:
Для плоского треугольника со сторонами a,b,c и углом alpha, противолежащим стороне a, справедливо соотношение:

 

a^2 = b^2 + c^2 - 2*b*c*cos(alpha)

 

в нашем случае, по теореме косинусов:

 

L2^2 = B^2 + L1^2 - 2*B*L1*cos(q2)
=> q2 = arccos(L1^2 - L2^2 + B^2 / 2*B*L1)
Q1 = q1 - q2 = arccos(x/B) - arccos(L1^2 - L2^2 + B^2 / 2*B*L1)

 

по той же теореме косинусов найдём угол Q2:
как видно по рисунку, угол Q2 равен 180 — угол OAx

 

В^2 = L1^2 + L2^2 - 2*L1*L2*cos(PI - Q2)
Q2 = PI - arccos(L1^2 + L2^2 - B^2 / 2*L1*L2)

 

Очевидно, что руку можно расположить и по-другому:

формулы для Q1 и Q2 не изменятся, но изменятся знаки углов:

 

Q1 = q1 + q2


а Q2 нужно брать с противоположным знаком.

Откуда берётся изменение знака? Из вычисления квадратного корня, которое всегда даёт ответ со знаком плюс-минус.







Дата добавления: 2015-08-29; просмотров: 1038. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия