Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тереоретическое обоснование. 4





Текст программы.. 5

Вывод программы.. 6


Цель работы

 

1. Программная реализация на языке С++ интерполяционных формул Ньютона, с помощью которого найти приближенное значение заданной функции.

2. Проверка работы составленной программы для заданной функции.

 

Таблица функции (1 вариант)

 

 

x y
1.415 0.888551
1.420 0.889599
1.425 0.890637
1.430 0.891667
1.435 0.892687
1.440 0.893698
1.445 0.894700
1.450 0.895693
1.455 0.896677
1.460 0.897653
1.465 0.898619

 

Найти приближенное значение функции, при следующих значениях аргументов:

 

1.4161 1.4625 1.4135 1.470

 


 

Теоретическое обоснование

Пусть для функции заданы значения для равноотстоящих значений независимой переменной: , , где - шаг интерполяции. Требуется подобрать полином степени не выше , принимающий в точках значения

 

(1)

 

Условия (1) эквивалентны тому, что при .

 

Интерполяционный полином Ньютона имеет вид:

 

. (2)

 

Легко видеть, что полином (2) полностью удовлетворяет требованиям поставленной задачи. Действительно, во-первых, степень полинома не выше , во-вторых,

 

и , .

 

Заметим, что при формула (2) превращается в ряд Тейлора для функции :

 

.

 

Для практического использования интерполяционную формулу Ньютона (2) обычно записывают в несколько преобразованном виде. Для этого введём новую переменную по формуле ; тогда получим:

 

, (3)

 

где представляет собой число шагов, необходимых для достижения точки , исходя из точки . Это и есть окончательный вид интерполяционной формулы Ньютона.

 


 







Дата добавления: 2015-09-15; просмотров: 304. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия