Студопедия — ВВЕДЕНИЕ. Рассмотрим механизм возникновения внутреннего трения (вязкости) в жидкостях
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ВВЕДЕНИЕ. Рассмотрим механизм возникновения внутреннего трения (вязкости) в жидкостях






Рассмотрим механизм возникновения внутреннего трения (вязкости) в жидкостях. Молекулы в жидкостях, интенсивно взаимодействуя между собой, находятся на значительно меньших расстояниях относительно друг друга, чем молекулы газа.

Характер теплового (хаотического) движения молекул в жидкостях существенно отличается от теплового движения молекул газа. Молекулы жидкости большую часть времени колеблются около своего положения равновесия. Вследствие хаотичности движения скорости и амплитуды колебаний соседних молекул различны, и время от времени соседние молекулы расходятся настолько, что некоторые из них оказываются на расстояниях порядка диаметра молекул (перескакивают) и начинают колебаться около нового положения равновесия.

При течении реальной жидкости отдельные слои ее воздействуют друг на друга с силами, касательными к этим слоям. Это явление называют внутренним трением или вязкостью.

Рассмотрим течение вязкой жидкости по горизонтальному руслу (рис. 1). Условно представим жидкость в виде нескольких слоев 1, 2, 3, 4, 5, 6. Слой вязкой жидкости, непосредственно граничащий с горизонтальным руслом, «прилипает» к нему и неподвижен. По мере удаления от дна скорость слоев жидкости нарастает (v1<v2<v3<v4<v5<v6). Максимальная скорость будет у слоя, который граничит с воздухом. Слои воздействуют друг на друга. Более быстрый слой ускоряет соседний с ним более медленный и, наоборот, более медленный задерживает более быстрый.

Вязкость проявляется в форме силы, препятствующей относительному движению слоев жидкости, касательной к слоям. Сила внутреннего трения, действующая между двумя слоями, пропорциональна площади соприкосновения взаимодействующих слоев и тем больше, чем больше их относительная скорость. Принято выражать силу в зависимости от изменения скорости, приходящегося на единицу длины в направлении, перпендикулярном скорости, т.е. от величины dv/dy, называемой градиентом скорости (формула Ньютона):

F = h . (1)

Величина h (греческая буква «эта») называется коэффициентом внутреннего трения или коэффициентом динамической вязкости. Если в (1) положить численно dv/dy = 1 и S = 1, то h = F, т.е. коэффициент динамической вязкости численно равен силе внутреннего трения, возникающей на каждой единице поверхности соприкосновения двух слоев, движущихся один относительно другого с градиентом скорости, равным единице.

В системе СИ (кг, м, с и т.д.) h измеряется в Па×с. Это такая вязкость, при которой на слой площадью в 1 м 2 действует сила в 1 Н при градиенте скорости 1 м/с на каждый метр длины.

В системе СГС (г, см, с, и т.д.) h измеряется в Пз (Пуазах).

Из молекулярно-кинетической теории следует, что существование внутреннего трения связано с переносом количества движения молекулами из слоя в слой вследствие теплового движения. В газах перенос количества движения происходит при переходе молекул из одного слоя в другой, что и определяет внутреннее трение между слоями. В жидкостях молекулы большую часть времени находятся около положения равновесия и этот механизм играет незначительную роль. Основной причиной возникновения сил трения в жидкостях является сильное взаимодействие между молекулами отдельных слоев. Движущийся слой жидкости увлекает соседние слои в основном за счет сил сцепления. Коэффициент вязкости жидкости зависит от природы жидкости и от температуры. С ростом температуры коэффициент вязкости жидкости уменьшается (у газов возрастает). Зависимость его от температуры жидкости дается формулой Френкеля:

h = B×exp(), (2)

здесь B - константа, k - постоянная Больцмана, Е - энергия активации: минимальная энергия, необходимая молекуле для преодоления сил взаимодействия с ближайшим окружением и перескока в новое положение равновесия. Величина Е ~ (2-3)*10-20 Дж, поэтому при нагревании жидкости на 10 градусов вязкость падает на 20-30%. В таблице 1 приведены некоторые характерные значения вязкости.

Таблица 1

Вещество Температура, оС h, Па×с
Воздух   1.71 .10-5
    1.84 .10-5
    1.96 .10-5
Вода   1.79 .10-3
    1.00 .10-3
    6.56 .10-4
Глицерин -42  
    1.49
Кровь   4.0 .10-3

Коэффициент вязкости жидкости может быть определен методом падающего шарика в вязкой среде (метод Стокса).

Рассмотрим свободное падение тела (в нашем случае - свинцового шарика) в вязкой покоящейся жидкости, простирающейся безгранично по всем направлениям. На шарик, свободно падающий в такой жидкости, не оставляющий за собой никаких завихрений (это реализуется при малых скоростях падения шариков малых размеров), действуют три силы:

1. Сила тяжести (P):

P = mg = V×r2 ×g = r3×r2×g, (3)

где r - радиус шарика; r2 - плотность шарика; g- ускорение свободного падения; m - масса шарика; V - объем шарика.

2. Выталкивающая сила (сила Архимеда, F1):

F1 = Vr1g = r3r1g, (4)

где r1 - плотность жидкости.

3. Сила сопротивления движению ( F2, обусловленная силами внутреннего трения между слоями жидкости):

F2 = 6 p h r v,(5)

где v - скорость слоев жидкости (скорость шарика).

Следует учесть, что здесь играет роль не трение шарика о жидкость, а трение отдельных слоев жидкости друг о друга, поскольку при соприкосновении твердого тела с жидкостью к поверхности тела сразу же прилипают молекулы жидкости. Тело обволакивается слоями жидкости и связано с ними межмолекулярными силами. Непосредственно прилегающий к телу слой жидкости движется вместе с телом со скоростью движения тела. Он увлекает в своем движении соседние слои жидкости, которые на некоторый период времени приходят в плавное безвихревое (ламинарное) движение (если скорость движения мала и диаметр шариков мал). Направление указанных выше сил показано на рис. 2.

Вначале шарик падает с ускорением и скорость движения шарика возрастает, но по мере увеличения скорости шарика сила сопротивления F2 будет также возрастать и, наконец, наступит такой момент, когда сила тяжести Р будет уравновешена суммой F1 и F2 и ускорение обратится в ноль:

P = F1 + F2. (7)

С этого момента движение шарика становится равномерным с какой-то скоростью vo.

Подставляя в (7) соответствующие значения для Р, F1 и F2, получим для коэффициента вязкости выражение

h = (r2 - r1) . (8)

Формула (8) справедлива, если шарик падает в жидкости, простирающейся безгранично по всем направлениям. Практически невозможно осуществить падение шарика в безграничной среде, так как жидкость всегда находится в каком-то сосуде, имеющем стенки и определенную высоту столба. Если шарик падает вдоль оси цилиндрического сосуда радиуса R с высотой жидкости h, то учет наличия стенок и высоты дает следующее выражение для h:

h = . (9)

 
Вопрос о том, какой формулой пользоваться при расчете, решается в зависимости от величины соотношения r/R и r/h. При движении шарика по оси цилиндра и при соотношении r/R = 1/10 различие в значениях h, полученных по формулам (8) и (9), составляет около 25%.







Дата добавления: 2015-08-12; просмотров: 4976. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия