Студопедия — Связь проницаемости с другими параметрами пористой среды
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Связь проницаемости с другими параметрами пористой среды






Зависимость проницаемости от размера пор можно получить с учетом законов Дарси и Пуазейля. Для использования уравнения Пуазейля пористую среду представляют в виде прямых трубок (каналов) одинакового сечения длиной L, равной длине пористой среды. По закону Пуазейля расход жидкости Q через такую пористую среду составит:

, (1.4.10)

где n – число пор приходящихся на единицу площади фильтрации,

R – радиус поровых каналов (или средний радиус пор среды),

F – площадь фильтрации.

Коэффициент пористости:

(1.4.11)

Однако по закону Дарси

, (1.4.12)

следовательно, и (1.4.13)

Или (1.4.14)

Величина R, определённая по (1.4.14), характеризует радиус пор идеальной пористой среды, обладающей пористостью m и проницаемостью k. для реальной среды величина R имеет условный смысл, т. к. не учитывает сложного строения и извилистости пор.

Можно также воспользоваться формулой Гагена – Пуазейля:

, (1.4.15)

где u – скорость движения жидкости в капилляре (или, что то же, истинная скорость движения флюида в пористой среде), d – диаметр капилляра.

Учитывая, что , получим:

,

откуда . Или , т. е. (1.4.16)

Котяхов предложил для реальной пористой среды следующую формулу:

, (1.4.17)

где - структурный коэффициент, - коэффициент извилистости поровых каналов, - средняя длина поровых каналов, - прямая, равная длине образца. Величина оценивается электрометрическим способом, по скорости движения красителей, ионов и может быть .

В формулу (1.4.17) введен коэффициент проточности поровых каналов:

. (1.4.18)

Таким образом,

. (1.4.19)

Ряд исследователей выразили проницаемость через другие физические параметры пористой среды:

1. Слихтер (1899) показал влияние упаковки шаров в фиктивном грунте на проницаемость:

, (1.4.20)

где d – диаметр шаров, кS – коэффициент упаковки, зависящий от пористости.

2. Козени (1927) предложил зависимость проницаемости от пористости в виде:

, (1.4.21)

а для несцементированных пород:

, (1.4.22)

где Sуд - удельная поверхность частиц в единице объёма породы.

3. Известна также формула Козени-Кармана:

. (1.4.23)

Из приведенных формул (и из некоторых других) следует, что проницаемость главным образом зависит от размеров пустот. Однако, следует иметь в виду, что в реальных условиях пористость не всегда однозначно определяет проницаемость. Так, глины, например, могут иметь очень высокую пористость – до 50%, однако поры в них, как правило, изолированы и субкапиллярны, а вода находится в связанном состоянии и препятствует продвижению гравитационной воды. Кристаллические породы, наоборот, при низкой пористости (6-8%) могут иметь высокие значения коэффициентов проницаемости за счет вклада проницаемости трещин.

 

По значениям проницаемости породы делят на три группы:

· Проницаемые – породы с коэффициентом проницаемости более 10-2 мкм2. Такие породы характеризуются и значительными коэффициентами пористости (от 20 до 40 %) и сложены такими грубо- и мелкообломочными породами, как гравий, галечники, пески, слабосцементированные песчаники, кавернозные карбонатные и трещиноватые магматические породы.

· Полупроницаемые – породы, проницаемость которых находится в пределах от 10-4 до 10-2 мкм2. Это глинистые пески, некоторые песчаники и алевролиты, мелкотрещиноватые известняки и доломиты. Большую часть этих пород занимают субкапиллярные поры.

· Практически непроницаемыми считаются породы с коэффициентами проницаемости менее 10-4 мкм2. К таким породам относятся глины, аргиллиты, глинистые сланцы, плотносцементированные песчаники и алевролиты с субкапиллярными порами, плотные карбонатные, магматические и метаморфические породы.







Дата добавления: 2015-08-12; просмотров: 1614. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия