Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Зависимость теплопроводности и теплоемкости пород от температуры и давления





Влияние температуры. Теплопроводность пород снижается с ростом температуры и особенно сильно до температуры 200—427 °С. У некоторых пород (оливинит, гранит, диорит) при достижении минимальных значений с увеличением температуры λ несколько возрастает. Минимум теплопроводности обычно совпадает с началом плавления пород. Неодинаковое поведение при нагревании, например, таких близких по составу разностей, как гранит и обсидиан, объясняют различием их структуры. По их поведению при нагревании породы делят на три группы: кристаллические (гранит, диорит, эклогит и др.), аморфные (обсидиан) и с кристаллоаморфной структурой (диабаз, порфирит и другие). У пород с кристаллической структурой теплопроводность обусловлена рассеянием фононов на кристаллических зернах и друг на друге. Последний процесс объясняет зависимость λ= f0/ t), где λ0 значение λ при 20 °С.

Для аморфных неупорядоченных по структуре пород теплопередача относится к случайным процессам и λ= f (t).

Для пород с кристаллоаморфной структурой характерен механизм теплопередачи обычный как для кристаллических, так и для аморфных тел. В связи с этим на их теплопроводность практически не влияет или слабо влияет температура.

Температуропроводность падает с ростом t. Этот процесс обычен для пород с кристаллической и в меньшей степени с кристаллоаморфной структурой; он почти не наблюдается у чисто аморфных разностей. Объемная теплоемкость пород увеличивается при их нагревании до температуры 850 °С.

Влияние давления. Теплопроводность увеличивается с ростом давления, причем максимальные ее изменения относятся к давлениям от 0,1 до 10 МПа. В дальнейшем коэффициент λ, мало изменяется или сохраняется практически постоянным. Предполагают, что рост λ связан с уплотнением контактов между зернами, так как после снятия давления λ становится выше первоначального. Температуропроводность растет с давлением.

Пространственное изменение коэффициента теплопроводности. О локальных и региональных закономерностях изменения значений тепловых величин горных пород земной коры известно пока мало. Имеются расчетные данные, дающие ориентировочное представление о коэффициенте теплопроводности структурно-формационных комплексов различных слоев земной коры. Из рассмотрения этих данных следует, что самой малой средней теплопроводностью 1,2 Вт/(мК) обладает осадочный слой земной коры, сложенный слаболитифицированными песчано-глинистыми отложениями молодых платформ. Теплопроводность литифицированных известково-магнезиальных и песчаноглинистых отложений древних платформ, краевых впадин и осадочных отложений складчатых областей имеют почти в 2 раза большую среднюю теплопроводность. Значения λ, при нормальных р и t для гранитно-метаморфического, диоритового слоев Земли сохраняются почти неизменными, но снова значительно возрастают до 3,4 Вт/(мК) в базальтовом слое.

Вопросы для закрепления:

1. Что такое теплопроводность?

2. В чем различие электронной и фононной теплопроводности?

3. Что такое плотность теплового потока?

4. Дайте определения различным видам теплоемкости. Какова связь между объемной и удельной теплоемкостью?

5. Что характеризует коэффициент температуропроводности и как он связан с другими тепловыми характеристиками?

6. Как описывается линейное и объемное расширение горных пород?

7. Дайте определение кондуктивного и конвективного переноса тепла в пористой среде.

8. Как выражаются аддитивные свойства тепловых характеристик насыщенных горных пород?

9. Как зависит теплопроводность от других петрофизических характеристик?

10. Как зависит теплопроводность и теплоемкость пород от температуры и от давления?

 

1.8. ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ГОРНЫХ ПОРОД

 

Электрические свойства горных пород играют важную роль при проведении электроразведки полезных ископаемых (не только нефти, но и, например, угля, горючих газов, различных минералов). Электрические методы исследования разрезов скважин дают возможность изучать характеристику вскрытых скважинами горных пород. Эти методы также позволяют получить сведения о коэффициентах пористости, проницаемости и степени глинизации пород, нефте - и газонасыщенности, необходимые для рациональной разработки месторождений.

Микроэлектрические методы исследования разрезов скважин дают детальные сведения о микроструктуре отдельных горизонтов. Знание детального строения продуктивных горизонтов необходимо при поисках, разведке, и особенно при разработке нефтяных и газовых месторождений.

Электрические свойства горных пород могут меняться в процессе разработки месторождения, а движение флюидов в пористой среде приводит к неэквивалентному обмену зарядами между твердым телом и жидкостью и возникновению так называемого двойного электрического слоя. Такие процессы происходят не только в пластах, но и между скважинным оборудованием и пластовой жидкостью.

К основным характеристикам, характеризующим электрические свойства горных пород, относятся:

· Удельное электрическое сопротивление

· Электропроводность

· Относительная диэлектрическая проницаемость

· Тангенс угла диэлектрических потерь

· Электрическая прочность

 







Дата добавления: 2015-08-12; просмотров: 1724. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия