Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод экспоненциального сглаживания. Используется для краткосрочного прогноза и основан на средневзвешенном значении продаж по определенному числу прошедших периодов





Используется для краткосрочного прогноза и основан на средневзвешенном значении продаж по определенному числу прошедших периодов. При этом наибольшие весовые коэффициенты придаются позднейшим продажам. Прогнозное значение рассчитывается по формуле


Константа сглаживания выбирается аналитиком итеративным способом в интервале от 0 до 1. Ее значение мало при малых изменениях продаж и приближается к 1 в случае сильных флуктуаций. Существуют компьютерные программы для определения этой константы.

Таблица 7.4. Квартальные продажи с коррекцией влияния сезонности (пример).

Кварталы             Сезонный индекс
              0, 908
              0, 996
              1, 153
              0, 943

В качестве примера рассмотрим данные в табл. 7.4. Проведена сезонная коррекция данных, чтобы найти оптимальное значение константы сглаживания. С целью проверки предсказательной силы модели привлечены данные за 1992 г. Чтобы предсказать продажи в первом квартале 1992 г., нужно располагать сглаженными оценками продаж за предыдущие периоды. Например, сглаженная оценка за первый квартал 1988 г.

Здесь в качестве сглаженной оценки за предыдущий период взяты данные после сезонной коррекции за 1987 г. (105), поскольку сглаженные данные за этот период не могут быть рассчитаны. Аналогичным

Таким образом, имеем следующий прогноз на первый квартал 1992 г.:

Обратите внимание, что прогноз всегда лежит в интервале между текущим объемом продаж и сглаженной оценкой за текущий период. Погрешность прогноза может быть рассчитана, как

Это очень большая погрешность, что может быть объяснено малым значением константы а в условиях быстрого роста продаж. Если выбрать для а значение 0, 80, то сглаженные продажи в 1991 г. составят 128, 6, а ошибка прогноза не превысит 1, 1%, что значительно лучше.

Существуют и более мощные методы сглаживания, использующие несколько констант сглаживания. Их обзор дан в книге (Makridakis and Wheelwright, 1973).

Главная слабость этих методов в том, что они не позволяют действительно «предсказать» эволюцию спроса, поскольку неспособны предвидеть какие-либо «поворотные точки». В лучшем случае они способны быстро учесть уже произошедшее изменение. Поэтому их называют «адаптивной прогнозной моделью». Тем не менее для многих проблем управления такой «апостериорный» прогноз оказывается полезным при условии, что имеется достаточно времени для адаптации и факторы, определяющие уровень продаж, не подвержены резким изменениям.


7.4.4. Экспликативные («объясняющие») модели

С научной точки зрения, «объективные» и «аналитические» методы являются самыми мощными. Они основываются на создании экспликативных математических моделей, которые позволяют имитировать рыночные ситуации в рамках альтернативных сценариев. В своей концептуальной основе математическое моделирование очень близко описанным ранее экспертным методам: требуется установить причинную структуру, разработать один или множество сценариев и для каждого отобранного сценария вывести оценку вероятного спроса. Отличие метода заключается в том, что причинная структура устанавливается и проверяется экспериментально, в условиях, поддающихся объективному наблюдению и измерению.







Дата добавления: 2015-08-12; просмотров: 374. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия