Нечеткая логика: достоинства и недостатки
Для описания неопределенностей в задачах автоматического управления используются три метода:
Более подробно остановимся на втором пункте. Впервые термин нечеткая логика (fuzzy logic) был введен амерканским профессором не то иранского, не то азербайджанского происхождения (в разных источниках указывается по-разному) Лотфи Заде в 1965 году в работе “Нечеткие множества” в журнале “Информатика и управление”. Основанием для создания новой теории послужил спор профессора со своим другом о том, чья из жен привлекательнее. К единому мнению они, естественно,:) так и не пришли. Это вынудило Заде сформировать концепцию, которая выражает нечеткие понятия типа “привлекательность” в числовой форме. Очевидной областью внедрения алгоритмов нечеткой логики являются всевозможные экспертные системы, в том числе:
В Японии это направление переживает настоящий бум. Здесь функционирует специально созданная лаборатория Laboratory for International Fuzzy Engineering Research (LIFE). Программой этой организации является создание более близких человеку вычислительных устройств.LIFE объединяет 48 компаний в числе которых находятся: Hitachi, Mitsubishi, NEC, Sharp, Sony, Honda, Mazda, Toyota. Из зарубежных (не Японских) участниковLIFEможно выделить: IBM, Fuji Xerox, а также к деятельности LIFE проявляет интерес NASA. Мощь и интуитивная простота нечеткой логики как методологии разрешения проблем гарантирует ее успешное использование во встроенных системах контроля и анализа информации. При этом происходит подключение человеческой интуиции и опыта оператора. В отличие от традиционной математики, требующей на каждом шаге моделирования точных и однозначных формулировок закономерностей, нечеткая логика предлагает совершенно иной уровень мышления, благодаря которому творческий процесс моделирования происходит на наивысшем уровне абстракции, при котором постулируется лишь минимальный набор закономерностей. Нечеткие числа, получаемые в результате “не вполне точных измерений”, во многом аналогичны распределениям теории вероятностей, но свободны от присущих последним недостатков: малое количество пригодных к анализу функций распределения, необходимость их принудительной нормализации, соблюдение требований аддитивности, трудность обоснования адекватности математической абстракции для описания поведения фактических величин. В пределе, при возрастании точности, нечеткая логика приходит к стандартной, Булевой. По сравнению с вероятностным методом, нечеткий метод позволяет резко сократить объем производимых вычислений, что, в свою очередь, приводит к увеличению быстродействия нечетких систем. Недостатками нечетких систем являются:
Если Вы немного заинтересовались этой мало изученной, но бесспорно перспективной областью науки, тогда только вперед. Далее будет рассказаны некоторые основы данной теории, кое-что о "нечетком" железе и софте.
|