Интеграция с интеллектуальными парадигмами
Гибридизация методов интеллектуальной обработки информации – девиз, под которым прошли 90-е годы у западных и американских исследователей. В результате объединения нескольких технологий искусственного интеллекта появился специальный термин – 'мягкие вычисления' (soft computing), который ввел Л. Заде в 1994 году. В настоящее время мягкие вычисления объединяют такие области как: нечеткая логика, искусственные нейронные сети, вероятностные рассуждения и эволюционные алгоритмы. Они дополняют друг друга и используются в различных комбинациях для создания гибридных интеллектуальных систем. Влияние нечеткой логики оказалось, пожалуй, самым обширным. Подобно тому, как нечеткие множества расширили рамки классической математическую теорию множеств, нечеткая логика 'вторглась' практически в большинство методов Data Mining, наделив их новой функциональностью. Ниже приводятся наиболее интересные примеры таких объединений. Нечеткие нейронные сети Нечеткие нейронные сети (fuzzy-neural networks) осуществляют выводы на основе аппарата нечеткой логики, однако параметры функций принадлежности настраиваются с использованием алгоритмов обучения НС. Поэтому для подбора параметров таких сетей применим метод обратного распространения ошибки, изначально предложенный для обучения многослойного персептрона. Для этого модуль нечеткого управления представляется в форме многослойной сети. Нечеткая нейронная сеть как правило состоит из четырех слоев: слоя фазификации входных переменных, слоя агрегирования значений активации условия, слоя агрегирования нечетких правил и выходного слоя. Наибольшее распространение в настоящее время получили архитектуры нечеткой НС вида ANFIS и TSK. Доказано, что такие сети являются универсальными аппроксиматорами. Быстрые алгоритмы обучения и интерпретируемость накопленных знаний – эти факторы сделали сегодня нечеткие нейронные сети одним из самых перспективных и эффективных инструментов мягких вычислений. Адаптивные нечеткие системы Классические нечеткие системы обладают тем недостатком, что для формулирования правил и функций принадлежности необходимо привлекать экспертов той или иной предметной области, что не всегда удается обеспечить. Адаптивные нечеткие системы (adaptive fuzzy systems) решают эту проблему. В таких системах подбор параметров нечеткой системы производится в процессе обучения на экспериментальных данных. Алгоритмы обучения адаптивных нечетких систем относительно трудоемки и сложны по сравнению с алгоритмами обучения нейронных сетей, и, как правило, состоят из двух стадий: 1. Генерация лингвистических правил; 2. Корректировка функций принадлежности. Первая задача относится к задаче переборного типа, вторая – к оптимизации в непрерывных пространствах. При этом возникает определенное противоречие: для генерации нечетких правил необходимы функции принадлежности, а для проведения нечеткого вывода – правила. Кроме того, при автоматической генерации нечетких правил необходимо обеспечить их полноту и непротиворечивость. Значительная часть методов обучения нечетких систем использует генетические алгоритмы. В англоязычной литературе этому соответствует специальный термин – Genetic Fuzzy Systems. Значительный вклад в развитие теории и практики нечетких систем с эволюционной адаптацией внесла группа испанских исследователей во главе с Ф. Херрера (F. Herrera). Нечеткие запросы Нечеткие запросы к базам данных (fuzzy queries) – перспективное направление в современных системах обработки информации. Данный инструмент дает возможность формулировать запросы на естественном языке, например: 'Вывести список недорогих предложений о съеме жилья близко к центру города', что невозможно при использовании стандартного механизма запросов. Для этой цели разработана нечеткая реляционная алгебра и специальные расширения языков SQL для нечетких запросов. Большая часть исследований в этой области принадлежит западноевропейским ученым Д. Дюбуа и Г. Праде. Нечеткие ассоциативные правила Нечеткие ассоциативные правила (fuzzy associative rules) – инструмент для извлечения из баз данных закономерностей, которые формулируются в виде лингвистических высказываний. Здесь введены специальные понятия нечеткой транзакции, поддержки и достоверности нечеткого ассоциативного правила. Нечеткие когнитивные карты Нечеткие когнитивные карты (fuzzy cognitive maps) были предложены Б. Коско в 1986 г. и используются для моделирования причинных взаимосвязей, выявленных между концептами некоторой области. В отличие от простых когнитивных карт, нечеткие когнитивные карты представляют собой нечеткий ориентированный граф, узлы которого являются нечеткими множествами. Направленные ребра графа не только отражают причинно-следственные связи между концептами, но и определяют степень влияния (вес) связываемых концептов. Активное использование нечетких когнитивных карт в качестве средства моделирования систем обусловлено возможностью наглядного представления анализируемой системы и легкостью интерпретации причинно-следственных связей между концептами. Основные проблемы связаны с процессом построения когнитивной карты, который не поддается формализации. Кроме того, необходимо доказать, что построенная когнитивная карта адекватна реальной моделируемой системе. Для решения данных проблем разработаны алгоритмы автоматического построения когнитивных карт на основе выборки данных. Нечеткая кластеризация Нечеткие методы кластеризации, в отличие от четких методов (например, нейронные сети Кохонена), позволяют одному и тому же объекту принадлежать одновременно нескольким кластерам, но с различной степенью. Нечеткая кластеризация во многих ситуациях более 'естественна', чем четкая, например, для объектов, расположенных на границе кластеров. Наиболее распространены: алгоритм нечеткой самоорганизации c-means и его обобщение в виде алгоритма Густафсона-Кесселя. Список можно продолжить и дальше: нечеткие деревья решений, нечеткие сети Петри, нечеткая ассоциативная память, нечеткие самоорганизующиеся карты и другие гибридные методы. Николай Паклин Список литературы:
ФАКТИЧЕСКАЯ ИНФОРМАЦИЯ О ВНЕДРЕНИИ НЕЧЕТКОЙ ЛОГИКИ (данные BISC на 1.02.2005) ПАТЕНТЫ • Число патентов, связанных с нечеткой логикой, примененных в Японии: 17 740 ПУБЛИКАЦИИ Число статей, содержащих слово «fuzzy» («нечеткий») в заголовке, имеющихся в базах данных INSPEC и MATH.SCI.NET Годы INSPEC MathSciNet ЖУРНАЛЫ (“fuzzy” или “soft computing” в заголовке): 1. Fuzzy Sets and Systems ПРИМЕНЕНИЯ Диапазон областей применения нечеткой логики слишком широк для его полного перечисления. Ниже приведен частичный список существующих областей применения, в которых зафиксирована существенная активность: ДОПОЛНЕНИЕ 1. ИНФОРМАЦИЯ О ПРОДУКТАХ Это дополнение содержит информацию о продуктах, использующих нечеткую логику отдельно или в комбинации. Сименс: Омрон: ДОПОЛНЕНИЕ 2. ИНФОРМАЦИЯ О ПРОДУКТАХ Это дополнение содержит информацию о продуктах, использующих нечеткую логику отдельно или в комбинации. Данные о системах на основе нечеткой логики в Японии (на 2.06.2004): 1. Видеокамера Сони (Sony) с нечеткой логикой. 2. Нечеткое управление на нефтяных предприятиях Идемитсу (Idemitsu Kosan Co. Ltd). 3. Кэнон (Canon) 4. Фотокамеры Минолта (Minolta) 5. Нечеткие регуляторы для предприятий корпорации Яматаке (Yamatake Corporation) 6. Другие применения
|