Отражение света
Как и преломление, отражение света подчиняется двум основным законам. Падающий и отраженный лучи находятся в одной плоскости с перпендикуляром, восстановленным к поверхности отражения в точке падения луча. Угол падения луча на плоскость равен углу отражения. Представим себе, что мы имеем идеально плоскую поверхность (в оптике такую поверхность называют зеркальной). В соответствии с законами отражения лучи света отражались бы от этой поверхности только в строго определенном направлении (рис. 1.2, а) и только с этого направления можно было бы этот предмет видеть. В реальной жизни наибольшее приближение к этому явлению можно наблюдать при отражении параллельного пучка лучей, например солнечного света, от хорошо отполированного зеркала. Такое отражение называется правильным или зеркальным. У подавляющего большинства окружающих нас предметов поверхность далека от зеркальной — она шероховатая, неровная. Лучи света, падая на микроучастки поверхности, расположенные под различными углами друг к другу, отражаются также под различными углами [(рис. 1.2, б). Это явление называется рассеянным или диффузным отражением.
Рис. 1.2. Отражение света: зеркальное (а), диффузное (б), смешанное, с индикатрисой рассеяния (в). Световые потоки: Ф0 – падающий, Фз – зеркально отраженный, Фд – диффузно отраженный (рассеянный), Фп – поглощенный.
Рассеянное отражение играет чрезвычайно важную роль в повседневной жизни. Благодаря этому явлению, мы имеем возможность наблюдать предметы с разных сторон, так как где бы ни находился наблюдатель, в его сторону будет направлена какая-то часть отраженных лучей. Съемка предметов с любой стороны возможна также благодаря рассеянному отражению. В природе не существует ни идеальных зеркальных поверхностей, ни идеально рассеивающих, т. е. таких, которые направленные лучи света отражают во все стороны одинаково. Для характеристики поверхностей по их рассеивающей способности строят специальные графики — индикатрисы рассеяния (рис. 1.2, в), С помощью этого графика можно определить, какая часть света отражается в ту или иную сторону. Для характеристики отражающих поверхностей, например отпечатков на фотобумаге, может быть использовано и понятие оптической плотности. Строго говоря, такой отпечаток нельзя рассматривать как пример изображения, образованного лучами света, отраженными от поверхности фотослоев. На самом деле лучи света лишь очень незначительно отражаются от поверхности отпечатка. Основная их часть проходит через фотослой и частично поглощается в соответствии с почернением (или окраской) отдельных участков. Непоглощенный свет отражается от поверхностных слоев бумаги, снова, но уже в обратном направлении проходит через фотослои, снова частично поглощается ими и только после этого выходит наружу, «как бы отразившись». Однако и проделав столь сложный путь, свет, исходящий из отпечатков, подчиняется тем же закономерностям, что и отраженный. Это и дает нам основание рассматривать отпечатки на фотобумаге как отражательные поверхности. При определении оптической плотности отпечатков на фотобумаге важно соблюдать определенное расположение источника света по отношению к поверхности, на которой измеряется оптическая плотность, и направление измерения отраженного светового потока. Схема измерения показана на рис. 1.3. Фотоотпечаток освещается световым потоком Ф0 под углом падения 45°. Приемник света (фотоэлемент) регистрирует световой поток Фд, рассеянный отпечатком перпендикулярно поверхности. Зеркально отраженный поток при этом в приемник не попадает. Такое расположение источника света, отпечатка и фотоэлемента соответствует рекомендуемым условиям рассматривания отпечатков, когда роль приемника играет уже не фотоэлемент, а глаз. Оптическая плотность фотоотпечатка в этом случае выражается уравнением
где Фд′ — световой поток, диффузионно отраженный от эталонной белой поверхности.
Р и с. 1.3. Схема измерения оптической плотности фотоотпечатка: 1 – фотобумага; 2 — источник света; 3 — приемник света (фотоэлемент)
|