Execution order
Execution of a C# program proceeds such that the side effects of each executing thread are preserved at critical execution points. A side effectis defined as a read or write of a volatile field, a write to a non-volatile variable, a write to an external resource, and the throwing of an exception. The critical execution points at which the order of these side effects must be preserved are references to volatile fields (§10.5.3), lock statements (§8.12), and thread creation and termination. The execution environment is free to change the order of execution of a C# program, subject to the following constraints: · Data dependence is preserved within a thread of execution. That is, the value of each variable is computed as if all statements in the thread were executed in original program order. · Initialization ordering rules are preserved (§10.5.4 and §10.5.5). · The ordering of side effects is preserved with respect to volatile reads and writes (§10.5.3). Additionally, the execution environment need not evaluate part of an expression if it can deduce that that expression’s value is not used and that no needed side effects are produced (including any caused by calling a method or accessing a volatile field). When program execution is interrupted by an asynchronous event (such as an exception thrown by another thread), it is not guaranteed that the observable side effects are visible in the original program order. Types The types of the C# language are divided into two main categories: Value types and reference types. Both value types and reference types may be generic types, which take one or more type parameters. Type parameters can designate both value types and reference types. type: A third category of types, pointers, is available only in unsafe code. This is discussed further in §18.2. Value types differ from reference types in that variables of the value types directly contain their data, whereas variables of the reference types store references to their data, the latter being known as objects. With reference types, it is possible for two variables to reference the same object, and thus possible for operations on one variable to affect the object referenced by the other variable. With value types, the variables each have their own copy of the data, and it is not possible for operations on one to affect the other. C#’s type system is unified such that a value of any type can be treated as an object. Every type in C# directly or indirectly derives from the object class type, and object is the ultimate base class of all types. Values of reference types are treated as objects simply by viewing the values as type object. Values of value types are treated as objects by performing boxing and unboxing operations (§4.3).
|