Б. Энергетический обмен головного мозга
Головной мозг хорошо снабжается кровью и имеет интенсивный энергетический обмен. Хотя головной мозг составляет около 2% массы тела, при спокойном состоянии организма он утилизирует около 20% поглощенного кислорода и 60% глюкозы, которая полностью окисляется до СО2 и Н2О в цитратном цикле и путем гликолиза. В клетках головного мозга практически единственным источником энергии, который должен поступать постоянно, является глюкоза. Только при продолжительном голодании клетки начинают использовать дополнительный источник энергии — кетоновые тела (см. рис. 305). Запасы гликогена в клетках головного мозга незначительны. Жирные кислоты, которые в плазме крови транспортируются в виде комплекса с альбумином, не достигают клеток головного мозга из-за гематоэнцефалического барьера. Аминокислоты не могут служить источником энергии для синтеза АТФ (АТР), поскольку в нейронах отсутствует глюконеогенез. Зависимость головного мозга от глюкозы означает, что резкое падение уровня глюкозы в крови, например, в случае передозировки инсулина у диабетиков, может стать опасным для жизни. В клетках центральной нервной системы наиболее энергоемким процессом, потребляющим до 40% производимого АТФ, является функционирование транспортной Na+/К+-АТФ-азы (Na+/K+-«насоса») клеточных мембран [1] (см. рис. 221). Активный транспорт ионов Na+ и К+ компенсирует постоянный поток ионов через ионные каналы. Кроме того, АТФ используется во многих биосинтетических реакциях.
В. Метаболизм аминокислот В клетках головного мозга идет активный метаболизм аминокислот. В головном мозге концентрация аминокислот почти в 8 раз выше, чем в плазме крови, и существенно выше, чем в печени. В особенности высоким является уровень глутамата (примерно 5-10 мМ) и аспартата (2-3 мМ). Эти аминокислоты образуются в реакции трансаминирования из промежуточных метаболитов цитратного цикла, 2-оксоглутарата и оксалоацетата (см. рис. 181). В тканях мозга интенсивно протекают метаболические превращения аминокислот, такие, как окислительное дезаминирование, трансаминирование, модификация боковой цепи и др. В особенности важной для нормального функционирования головного мозга является реакция декарбоксилирования, в результате которой образуется γ-аминомасляная кислота (γ-аминобутират) (ГАМК, GABA) (предшественник — глутамат) и биогенные амины. Биосинтез и деградацию глутамата можно рассматривать, как побочный путь цитратного цикла (ГАМК-шунт), который в отличие от основного цикла не приводит к синтезу гуанозин-5'-трифосфата (см. рис. 139). ГАМК-шунт характерен для клеток центральной нервной системы, но не играет существенной роли в других тканях. Некоторые аминокислоты, например глицин, аспартат, глутамат, ГАМК, выполняют в нейронах функцию медиаторов. Они хранятся в синапсах и выделяются при поступлении нервного импульса (см. рис. 343). Переносчики индуцируют или ингибируют потенциал действия, контролируя тем самым возбуждение соседних нейронов. Потенциал покоя и потенциал действия
|