Теоретическая часть. Вынужденные колебания в линейной диссипативной системе при гармоническом внешнем воздействии описываются дифференциальным уравнением
ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Вынужденные колебания в линейной диссипативной системе при гармоническом внешнем воздействии описываются дифференциальным уравнением
где Р0 – амплитуда внешней силы, р – частота внешней силы, d - коэффициент затухания, w0 – частота собственных колебаний. Система (1) является линейной, так как все параметры постоянны. Общее решение этого уравнения имеет вид:
А и В определяются из начальных условий. С течением времени собственное колебание, описываемое первым слагаемым в выражении (2) затухает, и в системе устанавливается вынужденное колебание, амплитуда
Резонансные кривые для разных коэффициентов затухания, изображенные на рис.1, соответствуют установившемуся стационарному процессу и определяют зависимость амплитуды колебаний от частоты внешней силы.
Рис. 1. Максимальная амплитуда колебаний достигается не при точном совпадении собственной частоты колебаний с частотой вынуждающей силы (как в случае консервативной системы), а смещается влево по оси частот на величину, зависящую от d. Максимум К характерным свойствам вынужденных колебаний в линейной системе можно отнести следующие: 1. частота колебаний совпадает с частотой вынуждающей силы; 2. так как в линейной системе действует принцип суперпозиции, увеличение амплитуды внешней силы в несколько раз дает увеличение амплитуды колебаний во столько же раз. Если какой-либо из параметров колебательной системы не является постоянным, а определяется свойствами системы, то уравнение (1) становится нелинейным. Общий вид уравнения, описывающего вынужденные колебания в нелинейной системе Рассмотрим колебательные процессы, происходящие в системе под действием внешней гармонической силы
Положим Тогда уравнение вынужденных колебаний принимает вид
Вынужденные колебания в нелинейной системе происходят не только на частоте внешней силы, но и на ее гармониках и субгармониках, то есть должны существовать и колебания частот 2р, 3р и т.д. Однако при достаточно высокой добротности системы и условии, что р»
где Амплитуда рассматриваемых колебаний определяется из решения системы уравнений (5) и (6).
Резонансные кривые (зависимость А(р)) для разных значений амплитуды внешней силы изображены на рис. 2(а, б). Штриховой линией изображена зависимость ![]()
Рис. 2. Отметим основные особенности резонанса в нелинейной системе: 1. Резонансные кривые в силу неизохронности наклонены и могут быть двух видов: а. Монотонные кривые (для б. Другой вид резонансных кривых соответствует амплитудам внешней силы, большим F0крит. В этом случае у резонансных кривых имеются участки с неоднозначной зависимостью амплитуды А от частоты внешнего воздействия. В области частот, где резонансная кривая трехзначна, среднее значение амплитуды неустойчиво (участок ЕС), поэтому при экспериментальном исследовании наблюдаются скачки амплитуды при достижении границ неустойчивой области.
2. Изменение амплитуды А с изменением частоты в разных направлениях происходит по-разному. Если снимать АЧХ в сторону увеличения частоты (от Если частоту менять в обратном направлении, то скачок амплитуды (резкое увеличение) происходит уже при В данном случае рассмотрена жесткая система (g>0). При g<0 (мягкая система) кривые будут иметь наклон в противоположную сторону. Для другого вида f(x) зависимость В системах с нелинейными потерями изменение амплитуды колебаний не влияет на собственную частоту. Поэтому резонансные кривые не имеют наклона. Характерной особенностью зависимости А(р) является наличие более плоской вершины резонансной кривой (в сравнении с линейной диссипацией).
|