Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Квантовое ограничение





 

Волна, соответствующая свободному электрону в твердом теле, может беспрепятственно распространяться в любом направлении. Ситуация кардинально меняется, когда электрон попадает в твёрдотельную структуру, размер которой L, по крайней мере в одном направлении, ограничен и по своей величине сравним с длиной электронной волны. Классическим аналогом такой структуры является струна с жёстко закрепленными концами. Колебания струны могут происходить только в режиме стоячих волн с длиной волны , n = 1, 2, 3,...

Аналогичные закономерности поведения характерны и для свободного электрона, находящегося в твёрдотельной структуре ограниченного размера или области твердого тела, ограниченной непроницаемыми потенциальными барьерами

 

Рис. 2 Возможности для движения электронов в квантовоограниченной наноразмерной структуре

 

На рис. 2 такая ситуация проиллюстрирована на примере квантового шнура, у которого ограничены размеры сечения a и b. В этих направлениях возможно распространение только волн с длиной, кратной геометрическим размерам структуры. Разрешенные значения волнового вектора для одного направления задаются соотношением (n = 1, 2, 3,...), где L в соответствии с рис. 1 может принимать значения, равные a или b. Для соответствующих им электронов это означает, что они могут иметь только определенные фиксированные значения энергии, то есть имеет место дополнительное квантование энергетических уровней. Это явление получило название квантового ограничения. Вдоль же шнура могут двигаться электроны с любой энергией.

 

 

Запирание электрона с эффективной массой m *, по крайней мере в одном из направлений, в соответствии с принципом неопределённости приводит к увеличению его импульса на величину . Соответственно увеличивается и кинетическая энергия электрона на величину . Таким образом, квантовое ограничение сопровождается как увеличением минимальной энергии запертого электрона, так и дополнительным квантованием энергетических уровней, соответствующих его возбужденному состоянию. Это приводит к тому, что электронные свойства наноразмерных структур отличаются от известных объёмных свойств материала, из которого они сделаны.

 

Если электрон заперт в атоме, молекуле или любой потенциальной яме, то волновая функция представляет стоячую волну. Если речь идет о прямоугольной потенциальной яме, которая изображена на рис. 3, то по своей форме волна будет такой же, как и в случае натянутой струны, однако, во-первых, природа волны здесь иная, а во-вторых, дискретным в этом случае будет не спектр частот, а спектр энергий.

 

Рис. 3. Волновые функции и уровни энергии частицы, находящейся в бесконечно глубокой потенциальной яме. Показаны три нижних энергетических уровня (красный цвет) и три волновые функции

 

Стоячие волны, описывающие электронные состояния в яме, - это синусоиды, обращающиеся в точках x = 0 и x = a в нуль:

, (1)

где n - номер квантового состояния, a - размер ямы. На рис. 2 изображены три такие функции, соответствующие n = 1, 2, 3,... Мы видим, что электронная плотность в яме распределяется неравномерно, есть максимумы и минимумы плотности вероятности. Из формулы (1) следует также, что длины волн -функций, описывающих электронные состояния с различными n, удовлетворяют условиям , то есть в яме укладывается целое число полуволн.

 

Теперь найдем разрешенные уровни энергии электрона, находящегося в потенциальной яме. Это можно сделать решив уравнение Шредингера, но мы воспользуемся сейчас правилом квантования Н. Бора. Согласно постулату Бора, в потенциальной яме разрешены лишь те траектории, для которых импульс частицы pn и ширина ямы a связаны соотношением

(2)

Здесь n - номер квантового состояния. Определив отсюда разрешенные значения импульса, без труда найдем и уровни энергии в яме:

(3)

 

Минимальная энергия частицы, находящейся в яме, не может быть равной нулю. Всегда существует так называемая энергия нулевых колебаний, которая, согласно формуле (3), равна .

Если ширина ямы равна 5 нм, то, согласно (3), имеем E1 = 0,02 эВ.

Электронная масса в кристалле может существенно отличаться от массы свободного электрона m = 10-27 г. В типичной ситуации эффективная масса в квантовой яме в десять раз меньше массы свободного электрона. Тогда при той же ширине ямы получим E1 = 0,2 эВ. Эта величина и определяет характерный масштаб электронных энергий в квантовых структурах.

 







Дата добавления: 2015-10-12; просмотров: 2215. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия