Квантовое ограничение
Волна, соответствующая свободному электрону в твердом теле, может беспрепятственно распространяться в любом направлении. Ситуация кардинально меняется, когда электрон попадает в твёрдотельную структуру, размер которой L, по крайней мере в одном направлении, ограничен и по своей величине сравним с длиной электронной волны. Классическим аналогом такой структуры является струна с жёстко закрепленными концами. Колебания струны могут происходить только в режиме стоячих волн с длиной волны Аналогичные закономерности поведения характерны и для свободного электрона, находящегося в твёрдотельной структуре ограниченного размера или области твердого тела, ограниченной непроницаемыми потенциальными барьерами
Рис. 2 Возможности для движения электронов в квантовоограниченной наноразмерной структуре
На рис. 2 такая ситуация проиллюстрирована на примере квантового шнура, у которого ограничены размеры сечения a и b. В этих направлениях возможно распространение только волн с длиной, кратной геометрическим размерам структуры. Разрешенные значения волнового вектора для одного направления задаются соотношением
Запирание электрона с эффективной массой m *, по крайней мере в одном из направлений, в соответствии с принципом неопределённости приводит к увеличению его импульса на величину
Если электрон заперт в атоме, молекуле или любой потенциальной яме, то волновая функция
Рис. 3. Волновые функции и уровни энергии частицы, находящейся в бесконечно глубокой потенциальной яме. Показаны три нижних энергетических уровня (красный цвет) и три волновые функции
Стоячие волны, описывающие электронные состояния в яме, - это синусоиды, обращающиеся в точках x = 0 и x = a в нуль:
где n - номер квантового состояния, a - размер ямы. На рис. 2 изображены три такие функции, соответствующие n = 1, 2, 3,... Мы видим, что электронная плотность в яме распределяется неравномерно, есть максимумы и минимумы плотности вероятности. Из формулы (1) следует также, что длины волн
Теперь найдем разрешенные уровни энергии электрона, находящегося в потенциальной яме. Это можно сделать решив уравнение Шредингера, но мы воспользуемся сейчас правилом квантования Н. Бора. Согласно постулату Бора, в потенциальной яме разрешены лишь те траектории, для которых импульс частицы pn и ширина ямы a связаны соотношением
Здесь n - номер квантового состояния. Определив отсюда разрешенные значения импульса, без труда найдем и уровни энергии в яме:
Минимальная энергия частицы, находящейся в яме, не может быть равной нулю. Всегда существует так называемая энергия нулевых колебаний, которая, согласно формуле (3), равна Если ширина ямы равна 5 нм, то, согласно (3), имеем E1 = 0,02 эВ. Электронная масса в кристалле может существенно отличаться от массы свободного электрона m = 10-27 г. В типичной ситуации эффективная масса в квантовой яме в десять раз меньше массы свободного электрона. Тогда при той же ширине ямы получим E1 = 0,2 эВ. Эта величина и определяет характерный масштаб электронных энергий в квантовых структурах.
|