Студопедия — II. СВОЙСТВА МАКРОМОЛЕКУЛ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

II. СВОЙСТВА МАКРОМОЛЕКУЛ

 

 

Основные характеристики макромолекулы - химическое строение, длина цепи (степень полимеризации, относительная молекулярная масса) и гибкость. Для низкомолекулярных соединений обычно бывает достаточно знать химическое строение.

 

ГИБКОСТЬ МАКРОМОЛЕКУЛ

 

Макромолекулы состоят из структурных единиц - составных звеньев, представляющих собой атомы или группы атомов, соединенные друг с другом ковалентными связями в линейные последовательности. Последовательность соединенных друг с другом атомов, образующих собственно цепь, называемую хребтом цепи, или цепью главных валентностей, а заместители у этих атомов - боковыми группами. Макромолекулы могут иметь линейное или разветвленное строение; в разветвленных различают основную и 6oковые цепи.

О том, что в макромолекуле отдельные её фрагменты совершают некоторое вращение стало известно давно по данным измерения теплоемкости полимеров: при достаточно высоких температурах теплоемкость пропорциональна 7/2R (без внутреннего вращения 6/2R, т. е. 3 поступательные степени свободы и 3 вращательные степени свободы молекулы в целом).

Химическое строение звеньев и их взаимное расположение в цепи характеризуют первичную структуру макромолекулы. Первичная структура исчерпывающе определяется конфигурацией макромолекулы - пространственным расположением атомов в макромолекуле, которое не может быть изменено без разрыва связей и обусловлено длинами связей и величинами валентных углов. Число различных способов взаимного расположения (чередования) звеньев (изомеров) в макромолекуле характеризуется конфигурационной энтропией и отражает меру информации, которую может содержать макромолекула. Способность к хранению информации - одна из самых важных характеристик макромолекулы, значение которой стало понятно после открытия генетического кода и расшифровки структуры основных биологических макромолекул - нуклеиновых кислот и белков.

Первичная структура синтетической макромолекулы предопределяет (вместе с молекулярно-массовым распределением, т. к. реальные синтетические полимеры состоят из макромолекул разной длины) способность полимеров:

- кристаллизоваться,

- быть каучуками,

- волокнами,

- стеклами и т. п.,

- проявлять иона- или электронообменные свойства,

- быть хемомеханическими системами (т. е. обладать способностью перерабатывать химическую энергию в механическую и наоборот).

 

С первичной структурой связана также способность макромолекул к образованию вторичных структур. (В биополимерах, состоящих из строго идентичных макромолекул, эти структуры достигают высокой степени совершенства и специфичности, предопределяя способность, например, белков быть ферментами, переносчиками кислорода и т. п.)

Макромолекулы способны к изменению формы и линейных размеров в результате теплового движения, а именно - ограниченного вращения звеньев вокруг валентных связей (внутреннее вращение) и связанного с ним изменения конформации макромолекулы, т. е. взаимного расположения в пространстве атомов и групп атомов, соединенных в цепь, при неизменной конфигурации макромолекулы. Обычно в результате такого движения макромолекула приобретает наиболее вероятную форму статистичиского клубка. Наряду с беспорядочной конформацией статистического клубка могут существовать упорядоченные (спиральные, складчатые) конформации, которые обычно стабилизированы силами внутри- и межмолекулярного взаимодействия (например, водородными связями). В результате внутримолекулярного взаимодействия могут быть получены макромолекулы в предельно свернутой конформации, называемой глобулой. При определенном воздействии на макромолекулу (ориентации) можно получить другую предельную конформацию - вытянутую макромолекулу (фибриллу).

Ограничения внутреннего вращения количественно описываются в терминах поворотной изомерии. Для фрагмента макромолекулы, построенной из атомов углерода, соединенных простыми связями (показать проекцию Ньюмена), схема энергетических барьеров внутреннего вращения изображена на рисунке:

 

Степень свободы (величины энергетических барьеров) этого вращения определяет гибкость макромолекулы, с которой связаны:

- каучукоподобная эластичность,

- способность полимеров к образованию надмолекулярных структур,

- почти все их физические и механические свойства.

Существуют понятия термодинамической и кинетической гибкости цепи.

Разница энергий De между минимумами на кривой зависимости внутренней энергии Е от угла вращения f определяет термодинамическую (статическую) гибкость макромолекулы, т.е. вероятность реализации тех или иных конформаций (напр., вытянутых, свернутых), размер и форму макромолекулы (или её части, т.н. термодинамического сегмента).

Величины энергетических барьеров DE определяют кинетическую (динамическую) гибкость макромолекулы, т.е. скорость перехода из одной конформации в другую. Величины энергетических барьеров зависят от размеров и характера боковых радикалов при атомах, образующих хребет цепи. Чем массивнее эти радикалы, тем выше барьеры. Конформация макромолекулы может изменяться и под действием внешней силы (например, растягивающей). Податливость макромолекулы к таким деформациям характеризуется кинетической гибкостью. При очень малых величинах гибкости, например, в случаях лестничных полимеров или наличия действующей вдоль цепи системы водородных или координационных связей, внутреннее вращение сводится к относительно малым крутильным колебаниям мономерных звеньев друг относительно друга, чему соответствует первая макроскопическая модель - упругая плоская лента или стержень.

 

Число возможных конформаций макромолекул возрастает с увеличением степени полимеризации, и термодинамическая гибкость по-разному проявляется на коротких и длинных участках макромолекулы. Это можно понять с помощью второй модели макроскопической - металлической проволоки. Длинную проволоку можно скрутить в клубок, а короткую, у которой длина и размер в поперечном направлении соизмеримы, - невозможно, хотя физические её свойства те же.

Непосредственно численная мера термодинамической гибкости (персистентная длина l) определяется выражением:

, где De >0, l0 10-10 м (т. е. порядка длины химической связи), k - постоянная Больцмана, T - температура.

Если контурная длина, т. е. длина полностью вытянутой макромолекулы без искажения валентных углов и связей, равна L, то L< l соответствует ситуации с короткой проволокой, и гибкость просто не может проявляться из-за малого числа допустимых конформаций. При L >> l макромолекула сворачивается в статистический клубок, среднеквадратичное расстояние между концами которого равно r= , и при отсутствии возмущающих факторов пропорционально p1/2 (p-степень полимеризации):

 




<== предыдущая лекция | следующая лекция ==>
Уведомление | Господи, это же так просто... И так, на самом деле, немного... Святой человек — только одно... Он принимает правду о своем сердце.

Дата добавления: 2015-10-12; просмотров: 1380. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия