Методы утилизации тепла
Утилизация тепла отходящих дымовых газов
Дымовые газы, покидающие рабочее пространство печей, имеют весьма высокую температуру и поэтому уносят с собой значительное количество тепла. В мартеновских печах, например, из рабочего пространства с дымовыми газами уносится около 80 % всего тепла поданного в рабочее пространство, в нагревательных печах около 60 %. Из рабочего пространства печей дымовые газы уносят с собой тем больше тепла, чем выше их температура и чем ниже коэффициент использования тепла в печи. В связи с этим целесообразно обеспечивать утилизацию тепла отходящих дымовых газов, которая может быть выполнена принципиально двумя методами: с возвратом части тепла, отобранного у дымовых газов, обратно в печь и без возврата этого тепла в печь. Для осуществления первого метода необходимо тепло, отобранное у дыма, передать идущим в печь газу и воздуху (или только воздуху). Для достижения этой цели широко используют теплообменники рекуперативного и регенеративного типов, применение которых позволяет повысить к. п. д. печного агрегата, увеличить температуру горения и сэкономить топливо. При втором методе утилизации, тепло отходящих дымовых газов используется в теплосиловых котельных и турбинных установках, чем достигается существенная экономия топлива. В отдельных случаях оба описанных метода утилизации тепла отходящих дымовых газов используются одновременно. Это делается тогда, когда температура дымовых газов после теплообменников регенеративного или рекуперативного типа остается достаточно высокой и целесообразна дальнейшая утилизация тепла в теплосиловых установках. Так, например, в мартеновских печах температура дымовых газов после регенераторов составляет 750—800 °С, поэтому их повторно используют в котлах-утилизаторах. Рассмотрим подробнее вопрос утилизации тепла отходящих дымовых газов с возвратом части их тепла в печь. Следует, прежде всего, отметить, что единица тепла, отобранная у дыма и вносимая в печь воздухом или газом (единица физического тепла), оказывается значительно ценнее единицы тепла, полученной в печи в результате сгорания топлива (единицы химического тепла), так как тепло подогретого воздуха (газа) не влечет за собой потерь тепла с дымовыми газами. Ценность единицы физического тепла тем больше, чем ниже коэффициент использования топлива и чем выше температура отходящих дымовых газов. Для нормальной работы печи следует каждый час в рабочее пространство подавать необходимое количество тепла. В это количество тепла входит не только тепло топлива , но и тепло подогретого воздуха или газа , т. е. . Ясно, что при = const увеличение позволит уменьшить . Иными словами, утилизация тепла отходящих дымовых газов позволяет достичь экономии топлива, которая зависит от степени утилизации тепла дымовых газов где — соответственно энтальпия подогретого воздуха и отходящих из рабочего пространства дымовых газов, кВт, или кДж/период. Степень утилизации тепла может быть также названа к.п.д. рекуператора (регенератора), % ; Зная величину степени утилизации тепла, можно определить экономию топлива по следующему выражению: где I'д, Iд — соответственно энтальпия дымовых газов при температуре горения и покидающих печь. Снижение расхода топлива в результате использования тепла отходящих дымовых газов обычно дает значительный экономический эффект и является одним из путей снижения затрат на нагрев металла в промышленных печах. Кроме экономии топлива, применение подогрева воздуха (газа) сопровождается увеличением калориметрической температуры горения , что может являться основной целью рекуперации при отоплении печей топливом с низкой теплотой сгорания. Повышение при приводит к увеличению температуры горения. Если необходимо обеспечить определенную величину , то повышение температуры подогрева воздуха (газа), приводит к уменьшению величины , т. е. к снижению доли в топливной смеси газа с высокой теплотой сгорания. Поскольку утилизация тепла позволяет значительно экономить топливо целесообразно стремиться к максимально возможной, экономически оправданной степени утилизации. Однако необходимо сразу заметить, что утилизация не может быть полной, т. е. всегда . Это объясняется тем, что увеличение поверхности нагрева рационально только до определенных пределов, после которых оно уже приводит к очень незначительному выигрышу в экономии тепла.
|