Студопедія
рос | укр

Головна сторінка Випадкова сторінка


КАТЕГОРІЇ:

АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія






For Whom The Bell Tolls 5 страница


Дата добавления: 2015-08-29; просмотров: 457



 

Разнообразные способы механического воздействия, приводящие к разрушению полимерного материала, можно отнести к трем типичным случаям:

ударные воздействия,

длительные воздействия при постоянной нагрузке,

периодические воздействия.

Ударное воздействие означает деформирование тела с большой скоростью. Если эта скорость превышает скорость распространения упругой деформации (скорость звука), то образец разрушается в месте приложения нагрузки, если не превышает, то образец разрушается по всему объему по механизму хрупкого разрушения. Пластическая деформация до разрушения образца не успевает развиться в сколько-нибудь значительной степени.

Сопротивление полимеров ударным нагрузкам характеризуется так называемой ударной вязкостью, величина которой, выражаемая в Дж/м2, численно равна работе разрушения ∆A, отнесенной к единице площади поперечного сечения образца S:

 

 

где а - ударная вязкость; S = b·h (b - ширина, h - толщина образца). Поскольку работа разрушения выражается интегралом напряжений по деформациям, то

 

 

где σр, εр - предельные напряжение и деформация образца при его разрушении, 0,5 < с < 1 - постоянная. Из (4.31) следует, что ударная вязкость определяется как прочностными (σр), так и деформационными (εр) характеристиками материала.

Ударную вязкость полимеров наиболее часто определяют, используя для разрушения образца кинетическую энергию маятника (рис. 4.17). Из схемы, приведенной на рис. 4.17, видно, что в исходном положении маятник массой M, плечом l0 обладает запасом потенциальной энергии, равной:

 

 

После разрушения образца и подъема маятника на угол Θ', энергия равна

 

 

следовательно, энергия, затраченная на разрушение, составляет:

 

 

Для расчета ударной вязкости из этой энергии необходимо вычесть кинетическую энергию разлетающихся осколков образца, которую можно рассчитать, исходя из закона сохранения импульса.

 

 

Значения ударной вязкости некоторых полимерных материалов приведены в табл. 4.4. Если сравнить ударную прочность различных полимеров с их структурой и свойствами, то можно сделать два вывода.

1. Полимеры с высокой ударной вязкостью имеют большие механические потери при низких температурах. К таким полимерам относятся полиэтилен, полиметиленоксид, поликарбонат, политетрафторэтилен, полибутадиен. Как было показано ранее, механические потери обусловлены релаксационными явлениями в полимерах, следовательно, отмеченная выше тенденция связана с частичной затратой энергии удара на перемещение сегментов макромолекул и ее рассеиванием в виде энергии в форме теплоты, выделяющейся при трении сегментов.

2. Смеси полимеров во многих случаях имеют существенно большую ударную вязкость по сравнению с гомополимерами.

Смесевые композиции широко используются на практике, наиболее известным из них является ударопрочный полистирол и ударопрочный АБС-пластик. В первом случае в жесткой матрице полистирола распределены частицы каучука размером несколько микрон, во втором - жесткой матрицей является сополимер стирола с акрилонитрилом, эластичной фазой - диеновый каучук, к которому привиты цепи сополимера акрилонитрил - стирол.

Основными причинами повышенной ударной вязкости смесевых композиций являются деформация частиц эластомера и образование вокруг них трещин серебра во время удара. На то и другое расходуется значительная часть энергии удара, что предотвращает разрушение образца.

 

Таблица 4.4 Ударная вязкость (по Изоду) некоторых полимерных материалов


<== предыдущая лекция | следующая лекция ==>
For Whom The Bell Tolls 4 страница | For Whom The Bell Tolls 6 страница
1 | 2 | 3 | 4 | <== 5 ==> | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
Studopedia.info - Студопедия - 2014-2024 год . (0.209 сек.) російська версія | українська версія

Генерация страницы за: 0.209 сек.
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7