Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формула трапеций. В формуле трапеций полагаем, что функция на отрезке [xi, xi+1] заменяется прямой линией, соединяющей точки (xi





В формуле трапеций полагаем, что функция на отрезке [xi, xi+1] заменяется прямой линией, соединяющей точки (xi, yi) и (xi+1, yi+1) (рис. 2.7.3).

Рис. 2.7.3 – Интегрирование формулой трапеций

Несложно записать уравнение прямой, проходящей через две точки:

Интегрируем:

(2.7.9)

Это же выражение можно легко получить из геометрических соображений (см. рис. 2.7.3).

Есть и еще один способ вывода данной формулы. Очевидно, что на каждом интервале функция заменяется полиномом первого порядка. Нам уже известны полиномы, интерполирующие табличную функцию по p+1 точке и дающие при этом степенной полином порядка p – это полиномы Ньютона и Лагранжа. Как уже было сказано, они являются разной формой записи одного и того же полинома, поэтому их применение даст одинаковый результат. Возьмем, например, полином Лагранжа. Тогда

(2.7.10)

Здесь A* – некоторые квадратурные коэффициенты. Если сетка равномерная, то делаем замену (2.5.9):

(2.7.11)

Т.к. сетка равномерная, квадратурные коэффициенты не зависят от индекса r. Используем выражение (2.5.6) и введем новые коэффициенты Hi:

(2.7.12)

(2.7.13)

Коэффициенты Hi называются коэффициентами Нью­то­на-Котеса. Для построения полинома первого порядка нужны всего две точки (т.е. p = 1), поэтому сетку можно считать равномерной. Интегрируя (2.7.13), получим

(2.7.14)

Т.е. полученное выражение совпадает с (2.7.9). Остается только просуммировать по всем интервалам:

(2.7.15)

Если сетка равномерная, то

(2.7.16)






Дата добавления: 2014-11-10; просмотров: 148. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.006 сек.) русская версия | украинская версия