Нахождение корней полинома. Если функция f (х) является полиномом, то все его корни можно определить, используя встроенную функцию polyroots(v),
Если функция f (х) является полиномом, то все его корни можно определить, используя встроенную функцию polyroots (v), где v — вектор, составленный из коэффициентов полинома.
Поскольку полином N -й степени имеет ровно N корней (некоторые из них могут быть кратными), вектор v должен состоять из N+1 элемента. Результатом действия функции poiyroots является вектор, составленный из N корней рассматриваемого полинома. При этом нет надобности вводить какое-либо начальное приближение, как для функции root. Ниже приведен алгоритм решения полинома на примере поиска корней полинома четвертой степени Шаг 1. Записать полином (без правой части), выделить указателем переменную, коэффициенты при которой необходимо определить (Рис. 6.2). Переменная х при этом будет выделена темным фоном.
Шаг 2. Выбрать: Главное меню, Символы, Коэффициенты полинома. Появляется вектор столбец с коэффициентами, в котором первым элементом является свободный член полинома, вторым — коэффициент при х 1 и т. д. Соответственно, последним n +1 элементом вектора должен быть коэффициент при старшей степени.
Шаг 3. Задайте вектор (например, V), поставьте знак присваивания, скопируйте полученный ранее вектор степеней полинома в буфер обмена (копировать) и вставьте его в правую часть созданного вектора V (вставить).
Шаг 4. Запишите (можно воспользоваться режимом «вставка функции» (Рис. 6.3)) функцию polyroots, единственным аргументом которой будет сформированный на шаге 3 вектор V. Поставьте знак равенства и получите вектор корней полинома, среди которых могут быть и комплексные числа.
|