Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Становление физиологии как науки





 

Рождение физиологии как науки связано с именем выдающегося английского врача, физиолога и эмбриолога Уильяма Гарвея. (Harvey, Wiliiam, 1578-1657) (рис. 90), которому принадлежит заслуга создания стройной теории кровообращения.

В возрасте 21 года У. Гарвей окончил Кембриджский университет. В 24 года в Падуе стал доктором медицины. Вернувшись на родину, Гарвей стал профессором кафедры анатомии, физиологии и хирургии в Лондоне.

Основываясь на достижениях своих предшественников – Галена, Везалия, Коломбо, Фабриция – Гарвей математически рассчитал и экспериментально обосновал теорию кровообращения, согласно которой кровь возвращается к сердцу по малому, и большому кругам. В связи с тем, что при жизни Гарвея в физиологии еще не применяли микроскопа, он не мог увидеть капилляров, – их открыл Марчелло Мальпиги (Malpighi, Marcello, 1628-1694) через четыре года после смерти Гарвея. По мнению Гарвея, кровь переходила из артерий в вены по анастомозам и через поры тканей.

После многолетней проверки в эксперименте У. Гарвей изложил свою теорию в фундаментальном сочинении «Анатомическое исследование о движении сердца и крови у животных» («Exercitatio anatomica de motu cordis et sangvinis in animalibus», 1628) и сразу же подвергся ожесточенным нападкам со стороны церкви и многих ученых. Первым теорию Гарвея признал Р. Декарт, затем Г. Галилей, С. Санторио, А. Борелли. И. П. Павлов определил ее как не только «редкой ценности плод его ума, но и подвиг его смелости и самоотвержения».

Большое влияние на развитие естествознания (и физиологии в частности) оказала деятельность выдающегося английского философа Френсиса Бэкона (Bacon, Francis, 1561-1626). Не будучи врачом, Бэкон во многом определил пути дальнейшего развития медицины. В своем труде «О достоинстве и усовершенствовании наук» он сформулировал три основные задачи медицины: «первая состоит в сохранении здоровья, вторая – в излечении болезней, третья – в продолжении жизни». Занимаясь экспериментальными работами в области физиологии, Бэкон поставил перед медициной несколько конкретных вопросов: об изучении анатомии не только здорового, но и больного организма, о введении обезболивания, об использовании при лечении болезней природных факторов и развитии бальнеологии. Решение этих и многих других задач, выдвинутых Ф. Бэконом, потребовало столетий.

Современник Френсиса Бэкона выдающийся французский ученый Рене Декарт (Descartes, Rene, 1596-1650) в простейшем виде разработал схему рефлекторной дуги. Все нервы он разделил на центростремительные, по которым сигналы поступают в мозг, и центробежные, по которым из мозга сигналы движутся к органам. Декарт считал, что жизненные действия имеют рефлекторную природу и подчиняются механическим законам.

Р. Декарт явился типичным представителем ятрофизики – направления в естествознании и медицине, которое рассматривало живую природу с позиций физики. По сравнению со средневековой схоластикой метафизическое мышление XVII в. было явлением прогрессивным, и механистические взгляды Декарта оказали положительное влияние на дальнейшее развитие философии и естествознания в эпоху нового времени. Однако наряду с материалистическим пониманием мира Декарт в ряде вопросов толковал явления идеалистически. Так, он считал, что мышление является способностью души, а не тела.

Другим направлением в естествознании была ятромеханика. Ее основные положения четко изложены в сочинении «О движении животных» (рис. 91) итальянского анатома и физиолога Джованни Альфонсо Борелли (Borelli, Giovanni Alfonso, 1608-1679)-одного из основоположников биомеханики. С позиций ятромеханики живой организм подобен машине, в которой все процессы можно объяснить при помощи математики и механики.

Среди выдающихся достижений эпохи Возрождения, имевших отношение как к физике, так и к медицине – изобретение в конце XVI в. термометра (точнее, воздушного термоскопа). Его автор – один из титанов эпохи Возрождения итальянский ученый Галилео Галилей (Galilei, Galileo, 1564-1642), подтвердивший и развивший гелиоцентрическую теорию Н. Коперника (1543). Множество его драгоценных рукописей было сожжено инквизицией. Но в тех, что сохранились, обнаружены: рисунки первого термоскопа. В отличие от современного термометра в нем расширялся воздух, а не ртуть. Почти одновременно с Галилеем профессор Падуанского университета Санторио (Santorius, 1561-1636), врач, анатом и физиолог, создал свой прибор, с помощью которого он измерял теплоту человеческого тела (рис. 92). Прибор был достаточно громоздким. Санторио установил его во дворе своего дома для всеобщего обозрения. Теплота различных частей тела определялась в течение десяти пульсовых ударов по изменению уровня жидкости в трубке, шкала которой была произвольной.

В начале XVII в. в Европе было сделано множество оригинальных термометров. Первый термометр, показания которого не зависели от перепадов атмосферного давления, был создан в 1641 г. при дворе Фердинанда II, императора Священной Римской империи, который не только слыл покровителем искусств, но и был автором ряда физических приборов. При его участии были созданы забавные по своей форме термометры, похожие на маленьких лягушат. Они предназначались для измерения теплоты тела человека и легко прикреплялись к коже пластырем. Полость «лягушат» заполнялась жидкостью, в которой плавали цветные шарики различной плотности. Когда жидкость согревалась, объем ее увеличивался, а плотность уменьшалась, и некоторые шарики погружались на дно прибора. Теплота тела пациента определялась согласно количеству разноцветных шариков, оставшихся на поверхности: чем их меньше, тем выше теплота тела испытуемого.

Разработка единой шкалы градусов растянулась на столетие. Последнее слово в этом вопросе принадлежит шведскому астроному и физику Андерсу Цельсию (Celsius, Anders, 1701-1744), который в 1742 г. предложил стоградусную шкалу: за 0° он принял температуру кипения воды, а точка таяния льда соответствовала 100°. Впоследствии эту шкалу перевернули, сделав 0° точкой таяния льда и началом отсчета. В таком виде шкала Цельсия дошла до наших дней, завоевав самую широкую популярность.

В медицинской практике термометрия начала применяться значительно позже – только во второй половине XIX в. Активное внедрение этого метода в России в 1860 г. связано с именем выдающегося русского клинициста С. П. Боткина (см. с. 270).

 







Дата добавления: 2014-10-22; просмотров: 1122. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия