Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сети Петри





 

Сети Петри – это аппарат для моделирования динамических дискретных систем. Динамическая система - это система, состояние которой изменяется с течением времени. В настоящее время сети Петри применяются в основном в моделировании [7].

Развитие теории сетей Петри проводилось по двум направлениям. Формальная теория сетей Петри занимается разработкой основных средств, методов и понятий, необходимых для применения сетей Петри. Прикладная теория сетей Петри связана главным образом с применением сетей Петри к моделированию систем, их анализу и получающимся в результате этого глубоким проникновением в моделируемые системы.

Моделирование в сетях Петри осуществляется на событийном уровне. Определяются, какие действия происходят в системе, какие состояние предшествовали этим действиям и какие состояния примет система после выполнения действия. Выполнения событийной модели в сетях Петри описывает поведение системы. Анализируя результаты выполнения, можно сказать о том, в каких состояниях пребывала или не пребывала система, какие состояния в принципе не достижимы.

Сеть Петри определяется как четверка < Р, Т, I, O>, где Р и Т - конечные множества позиций и переходов, I и O - множества входных и выходных функций. Другими словами, сеть Петри представляет собой двудольный ориентированный граф, в котором позициям Р соответствуют вершины, изображаемые кружками, а переходам Т - вершины, изображаемые утолщенными черточками; функциям I соответствуют дуги, направленные от позиций к переходам, а функциям О - дуги, направленные от переходов к позициям.

В сетях Петри вводятся объекты двух типов: динамические, которые изображаются метками (маркерами) внутри позиций, и статические, которые соответствуют вершинам сети Петри.

Маркировка - распределение маркеров по позициям. Маркеры могут перемещаться в сети. Каждое изменение маркировки называют событием, причем каждое событие связано с определенным переходом. События происходят мгновенно и разновременно при выполнении некоторых условий.

Каждому условию в сети Петри соответствует определенная позиция. Совершению события соответствует срабатывание перехода, при котором маркеры из входных позиций этого перехода перемещаются в выходные позиции. Последовательность событий образует моделируемый процесс.

 

Рис 12. Фрагмент сети Петри

Правила срабатывания переходов (рис. 12) конкретизируют следующим образом: переход срабатывает, если для каждой из его входных позиций выполняется условие Ni > = Ki, где Ni - число маркеров в i-й входной позиции, Ki - число дуг, идущих от i-й позиции к переходу; при срабатывании перехода число маркеров в i-й входной позиции уменьшается на Ki, а в j-й выходной позиции увеличивается на Мj где Мj - число дуг, связывающих переход с j-й позицией.

На рис. 12 показан пример распределения маркеров по позициям. Для срабатывания перехода эту маркировку можно записать в виде (2, 1, 3, 1) или (2131). После срабатывания перехода маркировка принимает вид (0, 0, 0, 4).

Возможно ввести ряд дополнительных правил и условий в алгоритмы моделирования, получая ту или иную разновидность сетей Петри. Так, прежде всего, полезно ввести модельное время, чтобы моделировать не только последовательность событий, но и их привязку ко времени. Это осуществляется приданием переходам веса - продолжительности (задержки) срабатывания, которую можно определять, используя задаваемый при этом алгоритм. Полученную модель называют временной сетью Петри. Если задержки являются случайными величинами, то сеть называют стохастической. В стохастических сетях возможно введение вероятностей срабатывания возбужденных переходов.

Рис. 13. Конфликтная ситуация.

Так, на рис. 13 представлен фрагмент сети Петри, иллюстрирующий конфликтную ситуацию: маркер в позиции р2 может запустить либо переход t1, либо переход t2. В стохастической сети предусматривается вероятностный выбор срабатывающего перехода в таких ситуациях.

Сеть называют функциональной, если задержки определяются как функции некоторых аргументов, которыми могут быть количество маркеров в каких-либо позициях, состояния некоторых переходов и т.п.

Во многих задачах динамические объекты могут быть нескольких типов, и для каждого типа нужно вводить свои алгоритмы поведения в сети. В этом случае каждый маркер должен иметь хотя бы один параметр, обозначающий тип маркера. Такой параметр обычно называют цветом; цвет можно использовать как аргумент в функциональных сетях. Сеть Петри при этом называют цветной. Среди других разновидностей сетей Петри следует упомянуть ингибиторные сети, характеризующиеся тем, что в них возможны (ингибиторные) дуги. Наличие маркера во входной позиции связанно с переходом ингибиторной дугой, означает запрещение срабатывания перехода [7].







Дата добавления: 2014-11-10; просмотров: 3031. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия