Студопедия — Этап 2: определение аппроксимирующей функции элементов
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Этап 2: определение аппроксимирующей функции элементов






Эту процедуру можно выполнить один раз для типичного элемента области безотносительно к его топологическому положению в ней. Полученная функция используется далее для всех остальных элементов области того же вида. Эта особенность является важным аспектом МКЭ. Благодаря ней элементы с однажды определенными функциями легко включаются в библиотеку элементов соответствующего программного комплекса. Далее эти элементы применяются для решения разнообразных краевых задач.

В качестве аппроксимирующих функций элементов чаще всего используются полиномы. В зависимости от степени полинома конечные элементы делятся на симплекс–, комплекс– и мультиплекс–элементы. Полиномы симплекс-элементов содержат константы и линейные члены; полиномы комплекс-элементов — константы, линейные члены, а также члены более высоких степеней. Комплекс-элементы, как правило, кроме граничных имеют дополнительные внутренние узлы. Полиномы мультиплекс-элементов также содержат члены более высоких степеней. На мультиплекс-элементы накладывается дополнительное условие: их границы должны быть параллельны координатным осям.

Одномерный симплекс-элемент представляет собой отрезок, изображенный на рисунке 2.15.

Рис. 2.15. Одномерный симплекс-элемент

 

При определении функции этого элемента для простоты будем считать, что узловые значения искомой непрерывной функции, определенные на концах отрезка, известны. По длине отрезка значение функции φ аппроксимируется полиномом:

φ = α 1 + α 2х. (2.46)

 

Коэффициенты α 1 и α 2 определяются через узловые значения функции Фi и Фj в соответствии с условием непрерывности:

 

φ = Фi при х = Хi,

φ = Фj при х = Хj. (2.47)

 

Подставив (2.47) в (2.46), получим систему уравнений:

 

Фi = α 1 + α 2 Хi,

Фj = α 1 + α 2 Хj.

 

решая которую, определим α 1 и α 2:

 

т.е. .

 

Подставив вычисленные значения коэффициентов аппроксимирующего полинома в (2.46), получим

 

.

 

Проведем эквивалентные преобразования правой части:

(2.48)

 

Члены полученного уравнения, заключенные в скобки, являются функциями формы одномерного симплекс–элемента:

 

; . (2.49)

 

С учетом обозначений (2.49) уравнение (2.48) принимает вид

 

φ = NiФi + NjФj, (2.50)

 

или в матричной форме

 

φ = NФ, (2.51)

 

где N = [Ni, Nj] — матрица–строка; — вектор-столбец.

Функция формы обладает следующим свойством: функция формы с номером i равна 1 в узле с соответствующим номером и равна 0 во всех других узлах. Не представляет труда убедиться в наличии этого свойства у функций формы (2.49).

Двумерный симплекс–элемент представляет собой плоский треугольник с прямолинейными сторонами.

Интерполяционный полином, аппроксимирующий непрерывную функцию φ внутри треугольного симплекс–элемента имеет вид

 

φ = a1 + a2x + a3y (2.52)

 

Чтобы получить выражения для функций формы элемента, необходимо пронумеровать узлы треугольника. Обозначим их номерами i, j, k, начиная с произвольно выбранного узла, двигаясь при этом против часовой стрелки (рис. 2.16). Узловые значения Фi, Фj, Фk будем по-прежнему считать известными.

 

Рис. 2.16. Функция двухмерного симплекс–элемента

 

Используя условие непрерывности искомой функции в узлах аналогично предыдущему случаю, составим систему уравнений

 

 

решая которую относительно неизвестных коэффициентов полинома, получим:

a1 = (0, 5/ S[(XjYk – XkYji + (XkYi – XiYkj + (XiYj

– XjYik]);

a2 = (0, 5/ S)[(Yj – Yki + (Yk – Yij + (Yi – Yjk]);

a3 = (0, 5/ S)[(Xk – Xji + (Xi – Xkj + (Xj – Xik]. (2.53)

 

где S — площадь элемента, вычисляемая по формуле

.

 

Подставим (2.53) в (2.52), проделаем аналогичные преобразования, получим

 

(2.54)

где (2.55)

и

 

Вычисляя значения функций формы Ni, Nj, Nk нетрудно убедиться, что они равны 1 в узлах с соответствующими номерами и 0 в остальных узлах элемента.

Функции (2.50) для одномерного и (2.55) для двумерного симплекс–элементов были получены для типичных элементов безотносительно к положению в области. Поэтому они удовлетворяют всем элементам данного типа, что позволяет создавать обширные библиотеки элементов в САПР. Аналогично вычисляют функции всех прочих типов элементов.

 







Дата добавления: 2014-11-12; просмотров: 2063. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия