Циклические виды спорта
[1] Имеется в виду оплачиваемая работа с полным рабочим днем или полной рабочей неделей либо неполным рабочим днем (неполной рабочей неделей, но с пересчетом на 26 календарных недель с полным рабочим днем (полной рабочей неделей).
[2] Имеется в виду оплачиваемая работа с полным рабочим днем или полной рабочей неделей либо неполным рабочим днем (неполной рабочей неделей, но с пересчетом на 26 календарных недель с полным рабочим днем (полной рабочей неделей).
[3] За последние три месяца работы по последнему месту работы.
[4] Вам необходимо знать, что в страховой стаж засчитываются время работы и иной деятельности – в том случае, если за эти периоды уплачивались страховые взносы в Пенсионный фонд Российской Федерации - например, период прохождения военной службы, а также другой приравненной к ней службы (предусмотренной Законом Российской Федерации " О пенсионном обеспечении лиц, проходивших военную службу, службу в органах внутренних дел, Государственной противопожарной службе, учреждениях и органах уголовно-исполнительной системы, и их семей"); период получения пособия по государственному социальному страхованию при временной нетрудоспособности; период ухода одного из родителей за каждым ребенком до достижения им возраста полутора лет, но не более трех лет в общей сложности; период получения пособия по безработице, период участия в оплачиваемых общественных работах и период переезда по направлению государственной службы занятости в другую местность для трудоустройства; период содержания под стражей лиц, которых необоснованно привлекли к уголовной ответственности, необоснованно репрессировали и впоследствии реабилитированных, и период отбывания наказания этими лицами в местах лишения свободы и ссылке; период ухода трудоспособным лицом за инвалидом I группы, ребенком-инвалидом или за лицом, достигшим возраста 80 лет.
Вопросы к занятию 1. Морфологическая организация скелетной мышцы. 2. Роль внутриклеточных структур в жизнедеятельности мышечной клетки. 3. Структурная организация и молекулярное строение миофибрилл. 4. Химический состав мышцы. 5. Роль АТФ в сокращении и расслаблении мышечного волокна. 6. Механизм мышечного сокращения. Последовательность химических реакций в мышце при ее сокращении. 7. Расслабление мышцы.
ТЕМА 2
БИОЭНЕРГЕТИЧЕСКИЕ ПРОЦЕССЫ ПРИ МЫШЕЧНОЙ ДЕЯТЕЛЬНОСТИ
Цель занятия: Изучить особенности процессов ресинтеза АТФ в энергетическом обеспечении различных мышечных упражнений и факторы, определяющие скорость их развертывания, максимальную мощность, метаболическую емкость и эффективность.
В двухфазной мышечной деятельности, т.е. при чередовании актов сокращения и расслабления, происходит несколько процессов, для протекания которых необходимо расщепление АТФ. Гидролиз АТФ происходит по уравнению: АТФ-аза- АТФ + Н2О АДФ + Н3РО4 + 10 ккал Наличие широкого круга процессов, потребляющих энергию при мышечной работе, обуславливает высокую скорость ее расходования. Запасы АТФ в мышечном волокне составляют 0, 4 – 0, 5 % от веса мышцы, их хватает на 0, 5 – 1 сек. работы с субмаксимальной интенсивностью. Мышечные волокна нормально работают только при содержании АТФ, колеблющемся в небольшом диапазоне. Накопление больших количсеств АТФ, чем 0, 5 % (от веса мышцы) в мышце не происходит, так как возникает субстратное угнетение миозиновой АТФ-азы, препятствующее образованию связей между нитями актина и миозина, ведущее к утрачиванию сократительной способности мышцы. При концентрации АТФ 0, 15-0, 2 % от веса мышцы наблюдается затруднение в работе «кальциевого насоса», и становится невозможным разрыв между актином и миозином. Все вышесказанное предъявляет высокие требования к процессам, обеспечивающим восполнение (ресинтез) запасов АТФ. При повышении работоспособности под влиянием физической тренировки происходит не только увеличение скорости расщепления АТФ при работе, но и совершенствование процессов, в которых АТФ ресинтезируется. Ресинтез АТФ при мышечной работе можно выразить суммарным уравнением: АДФ + Н3РО4 + энергия АТФ + Н2О Фосфорилирование АДФ неорганическим фосфатом в физиологических условиях требует затрат энергии в количестве около 10 ккал/моль. Нужное количество энергии освобождается в процессах двух типов: аэробных, происходящих с участием кислорода, и анаэробных, осуществляющих ресинтез АТФ без участия кислорода. Прежде чем переходить к характеристике различных путей ресинтеза АТФ, следует остановиться на показателях, позволяющих сравнивать, оценивать их достоинства и недостатки. К таким показателям относятся максимальная мощность процесса, скорость его развертывания, метаболическая емкость и эффективность. Под максимальной мощностью понимается наибольшая скорость освобождения энергии, используемой для ресинтеза АТФ, в том или ином процессе (наибольшее количество АТФ, ресинтезируемое в единицу времени). Скорость развертывания оценивается временем от начала работы до момента достижения процессом максимальной мощности. Метаболическая емкость – общее количество энергии, которое может быть освобождено в процессе распада вещества до исчерпания возможносте й его мобилизации (общее количество ресинтезируемой АТФ). Эффективность процесса – характеризуется отношением количества энергии, затраченной на выполнение механической работы, к общему количеству освободившейся энергии. Различают термодинамическую, метаболическую и механическую эффективность. Термодинамическая эффективность - оценивается той долей энергии АТФ, которая преобразуется в механическую работу. В механическую работу преобразуется 40-49 % (0, 4%) энергии, освобождающейся при расщеплении АТФ. Метаболическая эффективность показывает, какая часть освободившейся в ходе химических превращений энергии фиксируется в макроэргических фосфатных связях АТФ. В частности, для аэробного окисления углеводов максимальная метаболическая эффективность составляет около 60%. Механическая эффективность – количественно характеризует способность организма использовать энергию химических связей различных энергетических источников для обеспечения мышечной работы. Она рассчитывается как произведение термодинамической эффективности и метаболической. Аэробный процесс – основной механизм ресинтеза АТФ, практически полностью обеспечивающий в обычных условиях энергетические потребности организма. Он характеризуется высокой эффективностью, большой метаболической емкостью, широким кругом субстратов окисления (субстратами аэробного окисления могут быть углеводы, липиды, продукты белкового обмена), отсутствием накопления в организме токсических продуктов обмена. Однако, многостадийность этого процесса, сложный путь транспорта кислорода к работающим органам и ограниченные возможности систем, обеспечивающих этот транспорт, ограничивают аэробный процесс по максимальной мощности. Наряду с этим, аэробный процесс имеет низкую скорость развертывания. У нетренированных лиц процесс аэробного ресинтеза АТФ достигает своей максимальной мощности только через 3-4 минуты после начала напряженной мышечной работы. Наибольшая скорость ресинтеза АТФ в аэробном процессе у лиц с высокой степенью тренированно сти, выполняющих разминку, достигается только к концу первой минуты интенсивной мышечной работы. Учитывая, что многие спортивные упражнения имеют продолжительность меньшую, чем нужно для полного включения аэробного процесса, даже такую скорость развертывания можно рассматривать как недостаточно высокую. Другая особенность аэробного процесса заключается в том, что и при максимальной мощности в единицу времени в нем образуется меньше АТФ, чем расходуется за это же время при интенсивной физической работе. При наличии только аэробного механизма энергообеспечения организма не обладал бы способностью быстро переходить от состояния покоя к напряженной работе, быстро повышать мощность по ходу упражнения, выполнять кратковременные интенсивные упражнения скоростно-силового характера. Анаэробные процессы, включающие меньшее число химических реакций, чем аэробные, и не зависящие от поставки кислорода, превосходят аэробные процессы по скорости развертывания и характеризуются более высокой максимальной мощностью. Однако, их метаболическая емкость, зависящая от запасов креатинфосфата и гликогена, а также от устойчивости организма к воздействию продуктов анаэробного обмена значительно уступает аэробному процессу по метаболической емкости. Можно выделить три основных анаэробных процесса: креатинфосфокиназную реакцию, гликолиз и миокиназную реакцию. Во всех трех процессах ресинтез АТФ происходит путем взаимодействия АДФ с макроэргическими соединениями либо присутствующими в мышцах (АДФ и креатинфосфат), либо образующимися в процессе анаэробных окислительных превращений углеводов (дифосфоглицериновая и фосфопировиноградная кислоты). Следует рассмотреть локализацию этих энергопоставляющих процессов в мышечном волокне и их взаимоотношение при мышечной деятельности. Потребление АТФ миофибриллами в саркоплазме приводит к образованию АДФ, которая тут же в саркоплазме (на миофибриллах), регенирируется в АТФ в ходе креатинкиназной реакции. Креатинфосфат (КФ) отдает свою фосфатную группу и превращается в креатин. Гликолиз также происходит в саркоплазме. Субстратом для него является глюкоза, которая образуется из мышечного гликогена или приносится в мышцу кровью. В процессе гликолиза ресинтезируется АТФ, а конечный продукт – молочная кислота - покидает мышцу, диффундируя в кровь. Аэробные процессы окисления локализованы в митохондриях, туда поступает кислород и субстраты окисления – образовавшаяся в процессе гликолиза пировиноградная кислота (ПВК) и жирные кислоты. ПВК и жирные кислоты окисляются, и в форме ацетил КоА вступают в цикл Кребса. Следует указать на важную роль КФ в энергетике сердечной и скелетной мышц. КФ является связующим звеном между процессами, идущими с освобождением энергии (окислительное фосфорилирование, гликолиз), и процессами, ее потребляющими, он является переносчиком макроэргических фосфатных групп из митохондрий в саркоплазму - к миофибриллам. Мембраны митохондрий непроницаемы для АТФ, но проницаемы для КФ. Как только КФ отдает свою фосфатную группу АДФ, креатин проникает в митохондрии и получает от образовавшейся там АТФ фосфатную группу. Далее КФ из митохондрий движется в саркоплазму и снова вступает в реакцию с АДФ, восстанавливая АТФ. Механизм этот зависит от соотношения АТФ/АДФ в саркоплазме. Чем больше расход АТФ и увеличение содержания АДФ, тем интенсивнее он работает. При выполнении любой мышечной деятельности действуют все механизмы ресинтеза АТФ, хотя вклад каждого из них в ее энергетическое обеспечение зависит от мощности и продолжительности упражнения. Существует определенная последовательность включения и преобладания различных путей ресинтеза АТФ по мере продолжения мышечной деятельности: первые 2 – 3 с. расщепляется только АТФ, затем от 3 до 20 с. ее ресинтез происходит в основном за счет креатинфосфата, через 30 – 40 с. работы с максимальной интенсивностью основная доля энергии вырабатывается за счет анаэробного гликолиза, дальнейшее увеличение продолжительности работы повышает значимость в энергообеспечении аэробного механизма.
Вопросы к занятию 1. Анаэробные и аэробные пути ресинтеза АТФ при мышечной деятельности. 2. Дать характеристику химическим превращениям в ходе креатинфосфокиназной реакции, ее мощности, емкости, скорости развертывания и роли при мышечной деятельности (привести примеры физических упражнений, где преобладает этот тип реакций). 3. Ресинтез АТФ в процессе гликолиза, эффективность и особенности этого процесса при мышечной деятельности. 4. Миокиназная реакция и ее роль в поддержании постоянства концентрации АТФ в работающих мышцах. 5. Роль ресинтеза АТФ в процессе аэробного окисления в обеспечении энергией длительной мышечной деятельности. 6. Взаимосвязь между анаэробным и аэробным процессами в мышцах.
ТЕМА 3
ДИНАМИКА БИОХИМИЧЕСКИХ ИЗМЕНЕНИЙ В ОРГАНИЗМЕ ПРИ РАБОТЕ БИОХИМИЧЕСКИЕ ОСНОВЫ УТОМЛЕНИЯ
Цель занятия: Изучить динамику биохимических процессов при разных видах работы и при утомлении.
Мышечная деятельность приводит к многообразным изменениям обмена веществ, химизма органов и тканей. Изменения происходят не только в мышцах и органах, непосредственно связанных с обеспечением физической работы (сердце, легкие, и др.), но и во многих других органах и тканях, происходит перестройка обмена веществ всего организма. Совершенствуется нервная и гормональная регуляция обмена веществ. Усиливается поступление кислорода в организм и его транспорт к работающим органам и тканям. При мышечной работе увеличивается потребление кислорода (в 20-30 раз и даже по сравнению с уровнем покоя), потребность же организма в нем («кислородный запрос») удовлетворяется не полностью, иногда лишь на 10 % и даже на 3-5 % от необходимого. Такая работа может выполняться непродолжительное время, так как обеспечивается в основном за счет внутримышечных механизмов энергообеспечения, которые ограничены. Это временное несоответствие между потребностью в кислороде и его потреблением, наблюдается, как правило, в начале работы и быстро ликвидируется благодаря перестройке обмена. Наступает состояние, при котором потребление кислорода соответствует потребности в нем. Это так называемое устойчивое состояние по потреблению кислорода. Наличие этого состояния является условием для осуществления любой продолжительной работы. , При мышечной деятельности увеличивается скорость реакций распада АТФ и следовательно, активизируются процессы анаэробного и аэробного ресинтеза АТФ. Участие анаэробных процессов в энергообеспечении работы мышц приводит к снижению запасов креатинфосфата, используемых впервые секунды, и гликогена мышц. При длительных упражнениях начинает использоваться и гликоген печени, так как запасов гликогена мышц оказывается недостаточно. В мышцах и крови накапливаются продукты анаэробного обмена: креатин, неорганический фосфат, молочная кислота. С увеличением длительности работы в энергообеспечении мышц в основном начинают использоваться продукты распада жиров – жирные кислоты и кетоновые тела. Таким образом, усиливается мобилизация энергетических ресурсов организма, что приводит к повышению содержания в крови глюкозы, жирных кислот, глицерина, кетоновых тел.
Продолжительная напряженная мышечная работа вызывает усилие распада белков и увеличение в крови продуктов белкового обмена (мочевины). Таким образом, под влиянием физических упражнений происходят многообразные изменения обмена: повышение уровня окислительных процессов, распада энергетических запасов мышц (гликоген, триглицериды), мобилизация резервных питательных веществ организма (жирные кислоты, глицерин из жировой ткани, глюкоза из гликогена печени), поступление в кровь и доставка к мышцам и другим интенсивно работающим органам. Наряду с усилением процессов обмена, направленных на энергообеспечение мышечной работы, в организме происходит снижение интенсивности процессов биосинтеза (белков и др.), угнетение процессов пищеварения, снижение скорости всасывания питательных вещества из кишечника и др. изменения. Выполнение физических упражнений сопряжено со значительным повышением теплопродукции, что в свою очередь приводит к изменениям водно-солевого обмена в организме: потере воды, потере и перераспределению в организме минеральных солей и ионов. Мышечная деятельность характеризуется усилением выработки гормонов и повышение их содержания в крови. Степень выраженности изменений обмена в организме, сдвиги внутренней среды находятся в зависимости от мощности и продолжительности выполняемых упражнений, режима деятельности мышц, количества участвующих в работе мышечных групп и других особенностей работы. Различия в характере метаболических процессов при разных видах работы определяются особенностями ее энергетического обеспечения. Они лежат в основе классификации мышечных упражнений на зоны относительной мощности: максимальной, субмаксимальной, большой и умеренной. Зависимость биохимических процессов от мощности выполняемых упражнений и ее длительности выражается в том, что чем выше мощность, а, следовательно, больше скорость распада АТФ, тем в большей степени выражены анаэробные процессы ресинтеза АТФ. Мощность упражнения, при которой впервые обнаруживается усиление анаэробных реакций, называется порогом анаэробного обмена (ПАНО). У спортсменов он составляет 60-75% от критической мощности, т.е. от мощности, при которой достигается максимальное потребление кислорода (МПК). Мощность работы связана обратно пропорциональной зависимостью с ее продолжительностью. Предельная длительность работы в зоне максимальной мощности составляет 12-20 сек., на уровне 90-100 % МПО2 и работа обеспечивается энергией в основном за счет креатинфосфата и частично за счет гликолиза. В зоне субмаксимальной мощности – на уровне 80-90 % МПО2, работа продолжается от 20 сек, до 2-3 мин., энергетическое обеспечение такой работы идет за счет гликолиза, о чем свидетельствует высокое содержание молочной кислоты в крови. Длительность работы в зоне большой мощности (50-70 % МПО2) составляет до 30 мин. и основное значение в обеспечении энергией приобретают аэробные процессы. Наиболее интенсивные упражнения в зоне умеренной мощности (25-50 % МПО2), продолжительность которой может составлять до 4-5 часов, совершаются при максимуме аэробных процессов производства энергии. С точки зрения биоэнергетики полярные мощности физической нагрузки значительно различаются, и эти различия характеризуют степень и обратимость метаболических сдвигов, различные механизмы «запуска» и разный фон, на котором начинаются и протекают восстановительные процессы. Значительное влияние на характер и глубину биохимических изменений при мышечной работе оказывает режим деятельности мышц (статический, динамический, смешанный). Статический режим работы мышц снижает скорость кровообращения, в результате чего затрудняется снабжение мышц кислородом, питательными веществами, снижается скорость устранения продуктов обмена. Биохимические изменения при такой работе связаны в основном с участием анаэробных процессов ресинтеза АТФ. При динамическом режиме работы обеспечивается значительно лучшее снабжение тканей кислородом. В такой работе велика доля участия аэробного производства энергии. Особенности энергетического обмена и характер биохимических изменений при мышечной деятельности определяются участием разного количества мышечных групп, участвующих в работе (локальных, региональных, глобальных). Региональная и глобальная работы, при которых участвуют более 3/4 всех мышц тела (бег, плавание, лыжные гонки и т.д.) вызывают значительные биохимические изменения во всех органах и тканях организма. При выполнении такой работы усиливается деятельность дыхательной и сердечно - сосудистой систем, мышцы лучше обеспечиваются кислородом и обеспечение энергией происходит за счет аэробных процессов. Локальная работа, в которой участвует 1/4 всех мышц тела, в организме в целом вызывает незначительные биохимические сдвиги. В энергетическом обеспечении локальной работы велика доля анаэробных процессов. При мышечной деятельности развивается состояние утомления, для которого характерно временное снижение работоспособности. В зависимости от интенсивности и длительности работ утомление может развиваться быстро или нарастать медленно. Поэтому различают две формы утомления: 1) быстро развивающееся и 2) медленно нарастающее. В обоих случаях утомления возникают биохимические изменения в мышцах, характеризующиеся снижением содержания АТФ, К/Ф и гликогена, однако, они неспецифичны. Обе формы утомления по происходящим биохимическим изменениям в мышцах и головном мозге нетождественны, хотя и имеют общие черты. Это снижение содержания АТФ, КФ и гликогена, и повышение уровня АДФ (правда, в мозге оно менее значительно и кратковременно). Специфичным для обеих форм утомления в мышцах являются снижение активности АТФ-азы миозина и возможностей выделения и поглощения Са2+саркоплазматическим ретикулом – параметров, непосредственно связанных с сокращением и расслаблением мышцы. К этому присоединяется и нарушение проводимости в нервно-мышечном синапсе. Что объясняется затруднением ресинтеза ацетилхолина из-за нехватки АТФ как источника энергии. В самой общей форме утомление можно охарактеризовать как обратимое нарушение физиологического и биохимического гомеостаза, которое компенсируется в послерабочем периоде. Утомление связано с большим или меньшим исчерпанием резервных возможностей организма продолжать работу. Причина возникновения утомления многообразны и в настоящее время окончательно не выяснены: слишком различаются по структуре, напряженности и характеру физические нагрузки, ведущие к утомлению. При работе максимальной мощности энергообеспечение идет в основном за счет распада готовых фосфагенов в сокращающихся мышцах. Запасы их в переводе на кислородный эквивалент составляют примерно 40 мл/кг О2, но не более половины спортсмен может реализовать в предельно напряженной работе. Наибольший выход ее не превышает 83, 74-104, 67 кДж (Борилкевич В.Е., 1982). Поскольку работа такого темпа продолжается за очень короткие интервалы времени, функция кардиореспираторного аппарата и состояние обмена приобретают ведущее значение лишь в восстановительном периоде. Утомление, возможно, связано с несостоятельностью центрального механизма организации и координации движений такого темпа. Вероятны нарушения синаптической передачи на уровне – двигательное окончание – мышечное волокно вследствие остаточной деполяризации электровозбудимых мембран и развития парабиоза. Запасы фосфагенов, определяемые в мышце, суммарно могут быть пространственно недоступными для сократительных белков и работы ионных насосов из разных секторов клетки. Работа субмаксимальной мощности на 40-80 % покрывается за счет анаэробных процессов. Максимально реализуемый энергетический выход гликолиза в кислородных эквивалентах оценивается у молодых мужчин примерно в 55-80 мл/кг 02, до 200 мл/кг 02 и более у высококвалифицированных спортсменов (Борилкевич В.Е., 1982). Работа завершается на фоне наибольших сдвигов гомеостаза: выраженной лактацидемии, ацидоза (до рН 6, 8-6, 9 в крови высокотренированных спортсменов), гипогликемии, обеднения запасов гликогена в мышцах и печени, снижения ударного объема сердца. Основную роль в возникновении утомления видят в общих и местных (в работающих мышцах) сдвигах обмена и в неспособности организма компенсировать далее острые нарушения гомеостаза. При работе большой мощности явно преобладает аэробный путь энергообеспечения (75-97 %) и эффективность его, повидимому, зависит в основном от состояния кардиореспираторного аппарата и српособности организма длительно компенсировать нарастающие сдвиги кислотно-щелочного состояния, гипогликемию (энергетический голод мозга), нарушение терморегуляции. Работа умеренной мощности характеризуется практически полным аэробным энергообеспечением и возможностью длительного выполнения. Утомление, по-видимому, обусловлено суммой причин: истощением углеводного резерва и нарушением питания мозга, накоплением и ухудшением функций митохондрий, нарушениями терморегуляции и способности устойчиво регулировать и поддерживать гомеостатические механизмы. С исчерпанием этой способности, в том числе резервов кардиореспираторной системы, и связано прекращение работы.
Вопросы к занятию 1. Зависимость биохимических процессов в организме от характера мышечной деятельности. 2. Характеристика биохимических изменений в организме при выполнении упражнений в различных зонах мощности. 3. Особенности биохимических процессов при различных режимах деятельности мышц. 4. Характеристика биохимических изменений в организме при выполнении упражнений с участием различного количества мышечных групп. 5. Механизм образования кислородного долга. 6. Биохимические изменения в организме при утомлении: а) изменения в ЦНС; б) изменения в мышцах; в) понятие о доминирующей функции и «ведущем» звене утомления; г) развитие охранительного торможения и роль – аминомасляной кислоты (ГАМК).
ТЕМА 4
БИОХИМИЧЕСКИЕ ИЗМЕНЕНИЯ В ОРГАНИЗМЕ В ПЕРИОД ОТДЫХА ПОСЛЕ МЫШЕЧНОЙ РАБОТЫ
Цель занятия: Изучить динамику биохимических процессов в организме в период «срочного и отставленного восстановления»
Период отдыха характеризуется устранением возникших во время работы изменений в обмене веществ, усиленным окислением промежуточных и повышенной скоростью образования конечных продуктов обмена. В период отдыха происходит синтез и накопление энергетических веществ, усиливается процесс биосинтеза белков. Период отдыха характеризуется повышенным уровнем окислительных процессов, повышенным потреблением кислорода, т.к. происходит ликвидация кислородного долга (в начале его быстрая и медленная фракции, сверхмедленная фракция может восстанавливаться в течение 2-х и более суток). За кислородный долг принимают суммарную величину повышенного потребления кислорода (сверх обычного потребления для такого состояния в дорабочий период) после физической работы, т.е. кислородный долг составляет разницу между уровнем потребления кислорода после работы и обычной величиной потребления в таком состоянии. Кислородный долг оценивается в литрах. Кроме выражения его в абсолютных величинах (литры) часто прибегают к выражению кислородного долга в % к запросу, т.е. определяют его относительную величину по формуле:
кислородный долг, л * 100 -------------------------------------------------------- = долг в % кислородный запрос за время работы, л
Алактатный кислородный долг направлен на синтез макроэргов – АТФ и креатинфосфата, ресатурацию миоглобина, восстановление содержания О2 в жидкостях тела, обеспечение усиленной легочной вентиляции, а также церкуляции в начальной стадии периода восстановления и др. Лактатный кислородный долг используется частично на окисление определенной доли молочной кислоты, а главным образом на окисление липидов – основных источников энергии в период восстановления, в том числе и для процесса глюконеогенеза из лактата и других предшественников глюкозы. В период восстановления интенсивно устраняется повышенный уровень молочной кислоты лактата. Часть ее используется в качестве источника энергии, окисляясь до СО2 и Н2О, часть превращается в глюкозу и гликоген, часть выводится с мочой и потом. Превращение лактата в глюкозу носит название глюконеогенеза. Главные функции глюконеогенеза в период восстановления – это утилизация накопившейся во время работы молочной кислоты и ресинтез углеводов – глюкозы, из которой затем образуется гликоген. Глюконеогенез активно протекает лишь в печени и почках. Гормональными активаторами являются глюкокортикоиды, катехоламины, глюкоген, СТГ. Основными источниками глюконеогенеза в период отдыха являются: лактат, глицерин и аминокислоты (аланин, глутаминовая кислота и др.). Этот этап восстановления называется углеводным восстановлением. Нормализация содержания в крови и тканях продуктов жирового обмена (кетоновых тел, свободных жирных кислот) происходит более медленно. Этап жирового восстановления характеризуется усиленным липогенезом в печени и жировой ткани. В последнюю очередь восстанавливаются белки. Этап белкового восстановления называется анаболическим восстановлением. Возвращение показателей обмена к дорабочему исходному уровню происходит за счет аэробных путей ресинтеза АТФ. Интенсивность процессов восстановления, ресинтеза веществ, находится в зависимости от величины изменений, которые наблюдались в период физической работы. Для обмена веществ периода отдыха характерно то, что разные виды обмена достигают дорабочего уровня, восстанавливаются не в одно время. Это явление получило название гетерохронности (разно – временности). Оно распространяется не только на разные показатели обмена, но и на исходные показатели при их определении в разных органах. Так быстро восстанавливается в мышцах содержание креатинфосфата, длительнее восстанавливается гликоген и наибольшее время требуется для восстановления белкового обмена. Если взять отдельный показатель, например, гликоген, то быстрее всего после работы он восстанавливается в мозге, далее в сердце, мышцах и дольше всего идет восстановление в печени Второй особенностью обмена веществ периода отдыха является то, что для целого ряда показателей обмена характерно не только восстановление до исходного уровня, но и дальнейшее повышение, что получило название суперкомпенсации ( сверхвосстановление). Суперкомпенсация наблюдается в течение определенного времени. Далее след от воздействия нагрузки устраняется, показатель обмена возвращается к исходному, дорабочему уровню. Таким образом, для обмена веществ периода отдыха (восстановительный) после физической работы характерно преобладание процессов ассимиляции над диссимиляцией, что при определенных условиях приводит к таким изменениям обмена, какие не регистрировались до физической работы (суперкомпенсации). Явление сверхвосстановления наиболее демонстративно прослеживается на примере накопления энергетичсеского материала клетки, Вместе с тем, оно распространяется на более широкий круг биохимических процессов клетки, наиболее важными из которых являются: повышенный адаптивный (приспособительный) синтез белков (сократительные белки мышц и сердца, миоглобин и.др.), индукция ферментов. Это приводит к рабочей гипертрофии мышц, печени, миокарда, увеличению скорости окислительных процессов, эффективности использования АТФ для мышечного сокращения и совершенствования механизмов ее ресинтеза в процессе мышечной работы. Этому, например, способствует такое проявление суперкомпенсации как повышение уровня креатинфосфата и миоглобина мышц. Ряд биохимических проявлений сверхвосстановления настолько значителен, что может быть зарегистрирован с помощью гистологических (изменение размеров мышечных волокон, количества и формы митохондрий) и даже антропометрических и клинических методов (масса мышц, размеры сердца и печени). На основании рассмотренных закономерностей обмена периода отдыха и работы можно заключить, что тренировочный процесс должен охватывать период работы, когда происходят характерные для нее изменения обмена, и отдыха (восстановления), во время которого наблюдается специфическая перестройка обмена, возникают адаптивные сдвиги. Закрепление этих здвигов приводит к изменению функциональных возможностей клетки, органа и всего организма.
Вопросы к занятию 1. «Срочное» и «отставленное» восстановления. Этапы. 2. Понятие о кислородном долге, кислородном запросе организма и устойчивом состоянии. 3. Суперкомпенсация биохимических субстратов в клетке и ее роль для тренировочного процесса. 4. Принцип биохимической гетерохронности в период восстановления.
ТЕМА 5
БИОХИМИЧЕСКИЕ ФАКТОРЫ СПОРТИВНОЙ РАБОТОСПОСОБНОСТИ
Цель занятия: Изучить аэробные и анаэробные факторы спортивной работоспособности и соотношение в уровнях их развития у представителей различных видов спорта.
Среди ведущих биохимических факторов, определяющих спортивную работоспособность наиболее важными являются биоэнергетические (аэробные и анаэробные) возможности организма. В зависимости от интенсивности и характера обеспечения, работу предложено делить на несколько категорий: а) анаэробную (алактатную) зону мощности нагрузок; б) анаэробную (гликолитическую) зону; в) зону смешанного анаэробно-аэробного обеспечения (преобладают анаэробные процессы); г) зону смешанного аэробно-анаэробного обеспечения (преобладают аэробные процессы); д) зону аэробного энергообеспечения. Анаэробная работа максимальной мощности (10-20 сек.) выполняется в основном на внутриклеточных запасах фосфагена (креатинфосфат + АТФ). Кислородный долг невелик, имеет алактатный характер и должен покрыть ресинтез израсходованных макроэргов. Существенного накопления лактата не происходит, хотя возможно вовлечение гликолиза в обеспечение таких кратковременных нагрузок и содержание лактата в работающих мышцах увеличивается. Работа субмаксимальных мощностей в зависимости от темпа и продолжительности лежит в зонах анаэробного (гликолитического) и анаэробно-аэробного энергетического обеспечения. Ведущим становится вклад анаэробного гликолиза, что приводит к накоплению высоких внутриклеточных концентраций лактата, закислению среды, развитию дефицита НАД и аутоингибированию процесса. Лактат обладает хорошей, но конечной скоростью проникновения через мембраны и равновесие между его содержанием в мышцах и плазме устанавливается лишь спустя 5-10 мин. от начала работы. При работе большой мощности преобладает аэробный путь энергообеспечения (75-98 %). Работа умеренной мощности характеризуется практически полным аэробным энергообеспечением и возможностью длительного выполнения от 1 час. до многих часов в зависимости от конкретной мощности. Существует значительное число показателей, используемых для выявления уровня развития, аэробного и анаэробного механизмов преобразования энергии. Одним из них дают интегральную оценку этих механизмов, другие – позволяют охарактеризовать различные их стороны (скорость развертывания, мощность, емкость, эффективность) или состояние какого-либо отдельного звена или этапа. Наиболее информативными являются показатели, регистрируемые при выполнении тестирующих нагрузок, вызывающих близкую к предельной активацию соответствующих процессов преобразования энергии. При этом следует учесть, что анаэробные процессы обладают высокой специфичностью и в наибольшей мере включаются в энергетическое обеспечение только того вида деятельности, в котором спортсмен прошел специальную тренировку. Это значит, что для оценки возможностей использования анаэробных процессов энергообеспечения работы, у велосипедистов наиболее подходят велоэргометрические тесты, у бегунов – бег и т.д. Большое значение для выявления возможностей использования различных процессов энергообеспечения имеют мощность, продолжительность и характер выполняемого тестирующего упражнения. Например, для оценки уровня развития алактатного анаэробного механизма наиболее подходящими являются кратковременные (20-30 сек.) упражнения, выполняемые с максимальной интенсивностью. Наибольшие сдвиги, связанные с участием гликолитического анаэробного механизма энергообеспечения работы обнаруживаются при выполнении упражнений длительностью 1-3 мин. с предельной для этой продолжительности интенсивностью. Примером может быть работа, состоящая
|