Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Применение в здравоохранении





Средние величины – совокупная обобщающая характеристика количественных признаков. Применение средних величин:

1. Для характеристики организации работы лечебно-профилактических учреждений и оценки их деятельности:

а) в поликлинике: показатели нагрузки врачей, среднее число посещений, среднее число жителей на участке;

б) в стационаре: среднее число дней работы койки в году; средняя длительность пребывания в стационаре;

в) в центре гигиены, эпидемиологии и общественного здоровья: средняя площадь (или кубатура) на 1 человека, средние нормы питания (белки, жиры, углеводы, витамины, минеральные соли, калории), санитарные нормы и нормативы и т.д.;

2. Для характеристики физического развития (основных антропометрических признаков морфологических и функциональных);

3. Для определения медико-физиологических показателей организма в норме и патологии в клинических и экспериментальных исследованиях.

4. В специальных научных исследованиях.

Отличие средних величин от показателей:

1. Коэффициенты характеризуют альтернативный признак, встречающийся только у некоторой части статистического коллектива, который может иметь место или не иметь место.

Средние величины охватывают признаки, присущие всем членам коллектива, но в разной степени (вес, рост, дни лечения в больнице).

2. Коэффициенты применяются для измерения качественных признаков. Средние величины – для варьирующих количественных признаков.

Виды средних величин:

1) средняя арифметическая, ее характеристики – среднее квадратическое отклонение и средняя ошибка

2) мода и медиана. Мода (Мо) – соответствует величине признака, который чаще других встречается в данной совокупности. Медиана (Ме) – величина признака, занимающая срединное значение в данной совокупности. Она делит ряд на 2 равные части по числу наблюдений. Средняя арифметическая величина (М) – в отличие от моды и медианы опирается на все произведенные наблюдения, поэтому является важной характеристикой для всего распределения.

3) другие виды средних величин, которые применяются в специальных исследованиях: средняя квадратическая, кубическая, гармоническая, геометрическая, прогрессивная.

Средняя арифметическая характеризует средний уровень статистической совокупности.

- для простого ряда, где

∑ v – сумма вариант,

n – число наблюдений.

 

для взвешенного ряда, где

∑ vр – сумма произведений каждой варианты на частоту ее встречаемости

n – число наблюдений.

Среднее квадратическое отклонение средней арифметической или сигма (σ) характеризует разнообразие признака

- для простого ряда

Σ d2 – сумма квадратов разности средней арифметической и каждой варианты (d = │ M-V│)

n – число наблюдений

- для взвешенная ряда

∑ d2p – сумма произведений квадратов разности средней арифметической и каждой варианты на частоту ее встречаемости,

n – число наблюдений.

О степени разнообразия можно судить по величине коэффициента вариации . Более 20% - сильное разнообразие, 10-20% - среднее разнообразие, менее 10% - слабое разнообразие.

Если к средней арифметической величине прибавить и отнять от нее одну сигму (М ± 1σ), то при нормальном распределении в этих пределах будет находиться не менее 68, 3% всех вариант (наблюдений), что считается нормой для изучаемого явления. Если к 2 ± 2σ, то в этих пределах будет находиться 95, 5% всех наблюдений, а если к М ± 3σ, то в этих пределах будет находиться 99, 7% всех наблюдений. Таким образом, среднее квадратическое отклонение является стандартным отклонением, позволяющим предвидеть вероятность появления такого значения изучаемого признака, которое находится в пределах заданных границ.

Средняя ошибка средней арифметической или ошибка репрезентативности. Для простого, взвешенного рядов и по правилу моментов:

.

Для расчета средних величин необходимо: однородность материала, достаточное число наблюдений. Если число наблюдений меньше 30, в формулах расчета σ и m используют n-1.

При оценке полученного результата по размеру средней ошибки пользуются доверительным коэффициентом, которые дает возможность определить вероятность правильного ответа, то есть он указывает на то, что полученная величина ошибки выборки будет не больше действительной ошибки, допущенной вследствие сплошного наблюдения. Следовательно, с увеличением доверительной вероятности увеличивается ширина доверительного интервала, что, в свою очередь повышает доверительность суждения, опорность полученного результата.







Дата добавления: 2014-11-12; просмотров: 697. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия