Доходность AIM Constellation и S & P 500, 1983-1995 гг.
Наш математический анализ показал, что из-за сильной неустойчивости и слабой корреляции приходится признать, что в случае с AIM, как и в случае с American Mutual, результаты в значительной мере следует приписать случаю. На самом деле, чтобы с 95%-ной уверенностью сказать, что показатели фонда AIM не являются результатом удачи, нужно проследить за его деятельностью в течение столетия. В терминах управления риском это равносильно утверждению, что менеджеры AIM, пожалуй, часто шли на чрезмерный риск в своем стремлении обыграть рынок.
Многие противники курения беспокоятся о вредном воздействии табачного дыма на окружающих и выступают за запрещение курения в общественных местах. Каков риск заполучить рак легких, если кто-нибудь курит за соседним столом в ресторане или на соседнем сиденье в самолете? Согласитесь ли вы смириться с этим риском или настоите на немедленном прекращении курения рядом с вами? В январе 1993 года Министерство по охране окружающей среды выпустило отчет на 510 страницах под зловещим заголовком «Респираторные эффекты пассивного курения: рак легких и другие заболевания»22. Год спустя Кэрол Браунер, директор агентства по охране окружающей среды, выступила перед комитетом конгресса с предложением провести законопроект, предусматривающий ряд мер, направленных на запрещение курения в общественных зданиях. Браунер утверждала, что ее рекомендации обосновываются содержащимся в отчете заключением о том, что пассивное курение (ПК) — это «известная причина рака легких»23. А насколько это «известно», по крайней мере относительно окружающих? Каков риск заболевания раком от нахождения рядом с курильщиком? Есть только один способ попытаться точно ответить на этот вопрос — проверить всех, кто находился рядом с курильщиками с момента их появления несколько сот лет назад. Но даже если бы такая проверка и подтвердила связь между так называемым пассивным курением и раком легких, не было бы доказано, что именно оно было причиной рака. Практическая невозможность тестирования всех, всего, повсюду и по всему историческому периоду, связанному с курением табака, делает все результаты научных исследований неопределенными. То, что похоже на строгую связь, может оказаться не чем иным, как результатом лотереи, в которой разные наборы выборок из разных периодов, или разных мест, или разных групп людей из того же периода или того же места могут принести противоположные результаты. Только одно мы знаем точно: вероятность совпадения (не причинно-следственной связи) двух фактов — тесного общения с курильщиками и заболеваемости раком легких — меньше 100%. Разница между 100% и действительным значением вероятности — это вероятность того, что пассивное курение может не иметь отношения к раку легких и что подобные факты не обязательно выявятся в другой выборке. Риск умереть от рака легких из-за курящих в вашем присутствии людей сводится к набору шансов так же, как и в случайных играх. Большинство исследований, подобных анализу связи между пассивным курением и заболеванием раком легких, сводится к сравнению результатов обследования групп людей, подвергающихся влиянию исследуемого фактора, с результатами обследования контрольной группы, члены которой не подвергаются такому влиянию. Когда тестируется большинство новых лекарств, одной группе больных дают лекарство, а другой группе — плацебо, т. е. вполне нейтральные вещества того же внешнего вида, после чего сравнивают результаты. В случае пассивного курения анализировались случаи рака легких у некурящих женщин, живущих с курящими мужчинами. Контрольную группу составили из заболевших раком легких некурящих женщин, живущих с некурящими мужчинами. Отношение результата, полученного в ходе обследования группы, испытавшей воздействие исследуемого фактора, к результату, полученному в контрольной группе, не испытавшей такого воздействия, называется статистикой тестирования. Абсолютная величина статистики тестирования и степень неопределенности кладется в основу решения о необходимости тех или иных действий. Другими словами, статистика тестирования помогает наблюдателю провести различие между случаем с двумя расположениями букв КОНСТАНТИНОПОЛЬ и СТНОЬОАКОИПЛТНН и случаями с более значимыми результатами. В силу большого числа неопределенностей окончательное решение является в большей степени делом вкуса и установки, чем измерения, как в случае с вопросом — правильная монетка у незнакомки или со смещенным центром тяжести. Эпидемиологи — статистики здоровья — соблюдают те же критерии, что и при оценке эффективности инвестиционных менеджеров. Они обычно считают результат статистически значимым, если вероятность того, что здесь игра случая, составляет не более 5%. Результаты изучения пассивного курения были и близко не столь убедительны, как результаты гораздо более обширных исследований активных курильщиков. Хотя риск заболевания раком легких довольно хорошо коррелировал с интенсивностью пассивного курения — сколь много курил приятель больной, — процент заболевших женщин, подвергавшихся пассивному курению, оказался всего в 1,19 раза больше, чем у женщин, которых никто не обкуривал. Более того, эта скромная статистика тестирования базировалась только на тридцати обследованиях, из которых шесть не показали вообще никакой реакции на пассивное курение. Так как многие из этих обследований охватывали слишком малые выборки, только девять из них были признаны статистически значимыми24. Ни одно из одиннадцати обследований, проведенных в Соединенных Штатах, не отвечало этому критерию, а в семи из них обследовалось менее сорока пяти больных25. В конце концов, признав, что «агентство по охране окружающей среды никогда не утверждало, что пассивное курение в минимальном объеме создает большой риск заболеть раком»26, агентство заявило, что «приблизительно 3000 некурящих американцев каждый год умирают от рака легких, вызванного пассивным курением»27. Это заключение побудило конгресс принять закон, практически запрещающий курение в общественных местах.
В нашей истории мы добрались до того момента, когда неопределенность и насылаемая ею удача передвинулись к центру сцены. Декорации решительно переменились, потому что за время после Первой мировой войны мир постоянно сталкивался со все новыми и новыми рисками, да и традиционные риски никуда от нас не делись. Необходимость в управлении риском возрастала вместе с появлением новых видов риска. Острее других эту тенденцию ухватили Фрэнк Найт (Knight) и Джон Мейнард Кейнс, к чьим новаторским работам мы обратимся в следующей главе. Хотя они оба уже ушли из жизни, почти все их соображения и расчеты, о которых сейчас пойдет речь, еще живы. Это свидетельство того, насколько молоды идеи управления риском. Понятия, которые мы рассмотрим в следующей главе, никогда не затрагивались математиками и философами прошлого, потому что они были слишком заняты установлением законов вероятности, чтобы ухватиться за тайны неопределенности.
Глава 13 Радикально иная идея Фрэнсис Гальтон умер в 1911 году, а в следующем не стало Анри Пуанкаре. Их уход ознаменовал конец великой эпохи измерений, начало которой положил Пацциоли, затеявший пять столетий назад исследование игры в balla. Его задача о разделе банка в неоконченной игре между игроками (см. гл. 3, с. 61) стала исходной точкой долгого пути к определению будущего на основе законов вероятности. Ни один из великих математиков и философов прошлого, о которых мы говорили до сих пор, нимало не сомневался в том, что стоит правильно зафиксировать факты и проанализировать их на основе этих законов — и будущее откроет свои тайны. Я не имею в виду, что Гальтон и Пуанкаре закрыли эту тему: развитие принципов управления риском продолжается и сегодня. Но они умерли, исчерпав все возможности своего подхода к управлению риском, в преддверии великого исторического потрясения — Первой мировой войны. Оптимизм Викторианской эпохи был погашен бессмысленным уничтожением людей на полях сражений, послевоенными неурядицами и демонами, раскрепощенными русской революцией. Люди никогда уже больше не поверят в утверждение Роберта Браунинга: «Над нами Бог: / Всё в мире совершенно». Никогда больше экономисты не станут утверждать, что колебания экономики теоретически невозможны. Никогда больше ученые не будут столь безоговорочно благодушны, и никогда впредь институты религии и семьи не вернут прежнего уважения в западном мире. Первая мировая война всему этому положила конец. Радикальные изменения в искусстве, литературе и музыке породили абстрактные и часто шокирующие формы, которые резко контрастируют с уютными стилями XIX столетия. Стоило Альберту Эйнштейну показать, что евклидова геометрия небезупречно отображает свойства нашего пространства, а Зигмунду Фрейду провозгласить, что в основе человеческого поведения лежит иррациональность, как им была дарована мировая слава. До этого момента представители классической экономической науки рассматривали экономику как свободную от риска систему, автоматически ведущую к оптимальным результатам. Они уверяли, что ее стабильность гарантирована. Если люди решали, что лучше копить, а не вкладывать деньги, процентные ставки падали, ободряя инвесторов и разочаровывая вкладчиков, после чего равновесие восстанавливалось. Если руководители предприятий принимали решение о быстром расширении производства, а домашние хозяйства не имели достаточных сбережений, чтобы дать кредиты на этот рост, процентные ставки начинали расти, и равновесие восстанавливалось. В такой экономике, за исключением, пожалуй, кратковременных периодов приспособления, не могло быть длительной недобровольной безработицы или недостаточных прибылей. Отдельным инвесторам и фирмам приходилось, конечно, рисковать, но экономика в целом была свободна от риска. Даже созданные войной проблемы не сразу разрушили эти представления. Но зазвучали и новые голоса, утверждавшие, что мир уже не тот, каким казался раньше. В 1921 году экономист из Чикагского университета Фрэнк Найт написал нечто такое, что было странным для человека его профессии: «Очень большой вопрос, постижим ли мир вообще... Только в очень редких и критических случаях можно предпринять что-то вроде математического анализа»1. В разгар Великой депрессии пессимизму Найта вторил Джон Мейнард Кейнс: На каждом шагу мы встречаемся с проблемами органического единства, дискретности, разрыва непрерывности — целое оказывается не равным сумме его частей, количественные сравнения обманывают, малые изменения влекут за собой серьезные последствия, а предположения о едином и однородном континууме оказываются неудовлетворительными2. В 1936 году в своем основном труде «Общая теория занятости, процента и денег» («The General Theory of Employment, Interest and Money») Кейнс решительно отверг веру Джевонса в универсальную применимость измерений: «[Большинство наших решений] добиться чего-то положительного... принимается под влиянием одной лишь жизнерадостности... но отнюдь не в результате определения арифметической средней из тех или иных количественно измеренных выгод, взвешенных по вероятности каждой из них»3. В напряженной атмосфере послевоенного мира только самые наивные теоретики могли надеяться на то, что все проблемы можно решить с помощью рационального применения дифференциального исчисления и законов вероятности с верно подобранными предпочтениями. Математикам и философам пришлось признать, что реальность предъявляет целые наборы проблем, над которыми люди прежде не задумывались. Распределение вероятностей в этой реальности больше не укладывалось в схему треугольника Паскаля. Оно нарушало симметрию колоколообразной кривой и сходилось к средним, которые были намного менее стабильными, чем предполагал Гальтон. Исследователи искали методы систематического анализа неожиданностей. Перед войной их усилия концентрировались на исходной информации для принятия решений. Теперь они поняли, что решение — это только начало, самое трудное — не сами решения, а их последствия. Как заметил австралийский экономист Роберт Диксон (Dixon), «неопределенность, свойственная процессу принятия решения, обусловлена не столько тем, что существует будущее, сколько тем, что существует и всегда будет существовать прошлое... Мы оказываемся узниками будущего, потому что остаемся в ловушке прошлого»4. Предельный реалист Омар Хайям около тысячи лет назад думал приблизительно так же: Чертит Небесный Перст, а начертив, Труд свой продолжит. Будь благочестив Иль мудр — не зачеркнешь и пол-Строки, Не смоешь Слова, море Слез пролив. Что делать, если решение привело вас к результату, о котором и речи не было в наборе вероятных исходов? Или если маловероятные исходы реализуются с большей частотой, чем ожидалось? Всегда ли модели прошлого определяют тропу в будущее? Найт и Кейнс, первые поставившие эти вопросы всерьез, были отъявленными нонконформистами, но их определения риска актуальны и сегодня.
Фрэнк Найт родился в 1885 году на ферме вУайт-Оук, штат Иллинойс, и был старшим из одиннадцати детей5. Не имея аттестата о среднем образовании, он отучился в двух крошечных колледжах и большего, по-видимому, из-за бедности семьи просто не мог себе позволить. Первым был Американский университет, не имеющий ничего общего с одноименным университетом в Вашингтоне, штат Колумбия; в этом колледже особое значение придавалось умеренности во всем и даже преподавали «основы политической экономии в отношении употребления горячительных напитков». Рекламная брошюра этого университета рекомендовала родителям «отдавать своих трудновоспитуемых мальчиков в Американский университет для дисциплинирования». Вторым колледжем был Миллиган. На выпускном вечере президент колледжа отозвался о Найте как о «лучшем студенте из всех, каких я знал... очень начитанном... с большими способностями к практическому бизнесу и широкими техническими познаниями». Отвечая на вопрос, почему он стал экономистом, Найт сказал, что ему было трудно пахать. Перед тем как заняться экономикой, он написал дипломную работу по философии в Корнелле, а к экономике обратился после того, как профессор однажды произнес: «Хватит болтать, или покиньте философское отделение!» Но не этот резкий, обескураживающий окрик привел Найта в замешательство; один из его преподавателей философии предсказал, что «он разрушит истинную философию, как только прикоснется к ней». Найт был неисправимый циник, когда речь заходила о человеческой натуре. Более симпатизировавший ему профессор заметил: «Вы выбрались из дерьмовой среды, где каждый человек с мозгами сомневается во всем». В 1919 году Найт начал преподавать экономику в университете Айовы, а в 1928 году перешел в Чикагский университет. Он преподавал там до самой смерти, которая последовала в 1972 году на 88 году жизни. «Зарабатывать на жизнь нелегко», — признался он как-то. Найт часто плохо готовился к своим лекциям, перескакивал с одного на другое, как неотесанная деревенщина, и обильно сдабривал речь тяжеловесным юмором. Несмотря на раннее приобщение к религии и продолжительное изучение религиозных проблем в течение всей своей жизни, Найт был непримиримым противником всех и всяческих церквей на свете. В своем президентском обращении к Американской экономической ассоциации в 1950 году он уподобил Папу Римского Гитлеру и Сталину. Однажды он сказал, что религия мешает ему спокойно спать: «Это все проклятая религия. Я никак не могу выкинуть ее из головы». Раздражительный, преданный своему делу, честный человек, он был невысокого мнения о людях, принимавших самих себя слишком всерьез. Об экономической теории Найт говорил, что она считается непонятной и сложной из-за того, что большинству людей выгодно не понимать «оскорбительно очевидные вещи». Увидев цитату из лорда Кельвина, высеченную в камне на здании гуманитарного факультета Чикагского университета — «Когда чего-то нельзя измерить... наши знания об этом мало чего стоят», — Найт саркастически прокомментировал эту фразу следующим образом: «Ну что ж, если не умеете измерять как следует, измерьте как угодно»6.
Цинизм Найта и его преданность моральным ценностям мешали ему примириться с эгоизмом, а зачастую и жестокостью капитализма. Он презирал своекорыстие, которое движет покупателями и продавцами на рынке, хотя и понимал, что только своекорыстие помогает понять экономическую систему. Тем не менее он оставался приверженцем капитализма, потому что считал альтернативы неприемлемыми. Найт не интересовался эмпирическими доказательствами своих теоретических взглядов. У него было слишком много сомнений в рациональности и последовательности поведения людей, чтобы верить в то, что в изучении этого поведения есть хоть малейший смысл. Самый едкий сарказм он направлял на то, что называл «почти обессмысливанием экономической науки людьми, точка зрения которых кажется мне неприемлемой и, по сути дела, пустой, а именно что можно перенести в гуманитарные науки понятия и методы естествознания». Мысль, отразившаяся в этом замечании, впервые высказана Най-том в докторской диссертации, завершенной в 1916 году в Корнелле и опубликованной в 1921 году. «Риск, неопределенность и прибыль» («Risk, Uncertainty and Profit») — первая серьезная работа, посвященная подробному анализу принятия решений в условиях неопределенности. Найт строит анализ на различении риска и неопределенности: Неопределенность следует рассматривать в смысле, радикально отличном от хорошо знакомого понятия риска, от которого ее прежде никогда должным образом не отличали... Станет ясно, что измеримая неопределенность, или собственно «риск»... настолько далека от неизмеримой неопределенности, что, в сущности, вообще не является неопределенностью7. Подчеркнутое внимание к неопределенности противопоставило Найта господствовавшей в то время экономической теории, в центре внимания которой было принятие решений в условиях абсолютной определенности или с применением установленных законов вероятности; это направление еще и сейчас влачит жалкое существование в некоторых разделах современной экономической теории. Найт говорил о непригодности вероятностных вычислений для, выражаясь словами Эрроу, «отражения вечно ищущей, творческой природы человеческого духа перед лицом неведомого»8. Он был типичным порождением XX столетия. Элемент неожиданности, доказывал Найт, встречается обычно во всех системах, в которых многие решения зависят от прогнозирования будущего. В классической экономике особое неприятие вызывала у него ее понимание так называемой совершенной конкуренции, основанное на упрощенном представлении о «практическом всеведении каждого участника процесса конкуренции»9. В классической экономике покупатели и продавцы, рабочие и капиталисты всегда обладают всей необходимой информацией. А когда будущее неизвестно, результаты определяют законы вероятности. Даже Карл Маркс в его динамичной версии классической экономики никогда не обращается к прогнозированию. В его версии рабочие и капиталисты втянуты в драму, сюжет которой известен каждому и развязку которой они не в силах изменить. Найт доказывал, что трудности прогнозирования отнюдь не сводятся к невозможности применения математических утверждений. Хотя он не ссылается впрямую на Байеса, очевидны его сомнения в познавательной ценности эмпирических оценок частоты события в прошлом. Он утверждал, что априорные рассуждения не могут исключить неопределенность будущего. В результате он считает, что весьма рискованно полагаться на частоту события в прошлом. Почему? Экстраполяция от прошлого к будущему всегда была любимым методом вынесения суждений о том, что нас ждет впереди. Способность экстраполировать прошлое отличает взрослых от детей. Опытные люди замечают, что инфляция как-то связана с ростом процентных ставок, что при выборе партнеров в покер и жены важны личные качества, что облачность обычно предшествует ухудшению погоды, а езда на большой скорости по городу опасна. Деловые люди постоянно экстраполируют от прошлого к будущему, но часто не успевают заметить, когда ситуация начинает меняться от неблагоприятной к благоприятной и наоборот. Как правило, они фиксируют поворотные точки только постфактум. Если бы они лучше чуяли скрытые перемены, не было бы столь часто случающихся внезапных изменений доходности. Частые неожиданности в мире бизнеса с очевидностью доказывают, что неопределенность здесь превалирует над математической вероятностью. Найт следующим образом объясняет, почему это происходит: [Каждый] «отдельный случай»... настолько уникален, что других таких или вообще нет, или слишком мало, чтобы обеспечить возможность составить таблицу, пригодную для обоснования заключения о действительной вероятности случая, который нас интересует. Очевидно, это касается принятия решений не только в бизнесе, но и в других сферах человеческой деятельности10 [курсив мой. — П. Б.]. Математические вероятности относятся к множеству независимых наблюдений однородных событий, таких, как бросание кости, к которым Найт применяет понятие «аподиктической определенности» случайных игр1'11. Но не бывает события, в точности идентичного тем, что были прежде или будут потом. Во всяком случае, наша жизнь слишком коротка, чтобы можно было собрать большие выборки, позволяющие проводить такой анализ. Мы можем себе позволить утверждения типа «Мы на 60% уверены в том, что доходы возрастут в будущем году» или «В будущем году 60% нашей продукции будет расходиться лучше». Но Найт настаивал на том, что ошибки в таких прогнозах «должны быть решительно отделены от вероятностей или шансов... Говорить в объективном смысле о вероятности того, что суждение верно, бессмысленно, это неизбежно приводит к ошибке»12. Найт, подобно Эрроу, не любил расплывчатости. (Найт редко использует такие таинственные понятия. Apodeictic означает 'неопровержимый, необходимо верный вследствие логической определенности").
Идеи Найта касаются, в частности, финансовых рынков, где все решения отражают прогноз на будущее, а неожиданности случаются постоянно. Много лет назад Луи Башелье как-то заметил: «Ясно, что цена, которая считается на рынке наиболее вероятной, и является текущей рыночной ценой: если бы рынок рассудил иначе, он выбрал бы не эту цену, а другую, выше или ниже». Коллективно согласованные прогнозы, воплощенные в курсе ценных бумаг, означают, что курс не изменится, если случится то, чего ожидают участники рынка. Изменчивость курсов акций и облигаций показывает, сколь часто ожидаемое не происходит и инвесторы оказываются не правы. Изменчивость курса — это приблизительная мера неопределенности, которую нужно учитывать при определении инвестиционного риска. Гальтон, представитель Викторианской эпохи, сказал бы, что цены колеблются около стабильного среднего значения. Найт и Баше-лье, как представители поствикторианской эпохи, ничего не говорят ни о точном значении среднего, ни о том, будет ли оно превалировать вообще. Позже мы еще вернемся к обсуждению этой проблемы. Найт невзлюбил Джона Мейнарда Кейнса, когда узнал в 1940 году, что Чикагский университет присудил ему почетную степень. Это побудило Найта написать сумбурное письмо протеста Якобу Винеру, почетному члену Чикагского факультета экономики. Винер, как утверждал Найт, считается ответственным «более, чем кто-либо другой», за решение почтить Кейнса, и поэтому «именно ему следует послушать о шоке, который я испытал, узнав об этой новости»13. Найта возмутило, что работа Кейнса и энтузиазм, с которым его чествовали академики и политики, создали «один из самых главных источников... трудностей в последние годы». Воздав Кейнсу должное как «весьма неординарному мыслителю в смысле изобретательности и диалектичности», он отдается негодованию: Я пришел к пониманию, что такие способности, направленные к ошибочным и гибельным целям, представляют собой одну из самых серьезных опасностей для всей системы образования. <...> Я считаю, что взгляды мистера Кейнса, касающиеся денег вообще и теории денег в частности... это предательство, это, фигурально выражаясь, то же самое, что бросить из окна рвущимся в ворота филистимлянам ключ от крепости. Хотя большая часть чикагских экономистов были сторонниками свободного рынка и не могли согласиться с утверждением Кейнса, что капиталистическая система, чтобы выжить, нуждается в частом вмешательстве правительства, они не разделяли презрительного отношения к нему Найта. Они считали уместным почтить Кейнса как блистательного новатора в экономической теории. Может быть, Найт просто ревновал к Кейнсу, потому что у них был один и тот же философский подход к экономическим проблемам. Например, оба они не доверяли классическим теориям, в которые основой принятия решений была теория вероятностей или предположения об определенности. И оба одинаково презирали «среднестатистический взгляд на жизнь»14. В эссе «Мои ранние убеждения» («My Early Beliefs»), написанном в 1938 году, Кейнс клеймит как «беспочвенное и гибельное» предположение классической экономики о разумности человеческой природы15. Он указывает на «глубокие и ослепляющие страсти» и на «болезненные и иррациональные вспышки злобы, свойственные столь многим». Вряд ли это взгляды человека, способного передать из окна ключи от крепости филистимлянам, рвущимся в ворота. Найта могло раздражать, что Кейнс пошел по пути разграничения понятий риска и неопределенности гораздо дальше, чем он сам. И уж совсем его должно было взбесить то, что единственная ссылка на него в книге Кейнса «Общая теория занятости, процента и денег» была помещена в сноске, в которой с пренебрежением упоминалась одна из его работ о процентных ставках как написанная «в традиционно классическом стиле», хотя Кейнс признавал, что работа «содержит много интересных наблюдений о природе капитала»1. И это — всё! После пятнадцати лет новаторских исследований Найта в области риска и неопределенности.
Кейнс был интеллектуальным и социальным антиподом Найта. Он родился в 1883 году в состоятельной и хорошо известной британской семье, один из предков которой высадился на берег Британии вместе с Вильгельмом Завоевателем. Как пишет его последний биограф Роберт Скидельски, Кейнс был «не только человек истеблишмента, но и входил в элиту любого истеблишмента, членом которого он был. Едва ли был такой момент, когда бы он не смотрел свысока на Англию, да и на мир в целом»17. Среди близких друзей Кейнса были премьер-министры, финансисты, философы Бертран Рассел и Людвиг Витгенштейн, художники и писатели Литтон Стречи, Роджер Фрай, Дункан Грант, Вирджиния Вулф. Кейнс получил образование в Итоне и Кембридже, где изучал экономику, математику и философию под руководством ведущих ученых. Он был великолепный эссеист, о чем можно судить по тому, как он преподносил публике свои противоречивые идеи и планы. Профессиональную карьеру Кейнс начал с длительной службы в казначействе Министерства финансов Великобритании, включая службу в Индии и деятельное участие в работе казначейства во время Первой мировой войны. Позднее он участвовал в Версальских мирных переговорах в качестве представителя казначейства. Считая, что мстительный характер заключенного там договора должен привести к экономическим неурядицам и политической нестабильности в послевоенном мире, он оставил свой пост, чтобы написать книгу, озаглавленную «Экономические последствия мира» («The Economic Consequences of the Peace»). Книга скоро стала бестселлером и принесла Кейнсу международную известность. Впоследствии он вернулся в свой любимый Королевский колледж в Кембридже преподавать, писать и служить в качестве казначея и инспектора по инвестированию, совмещая все это со службой в качестве председателя и инвестиционного менеджера крупной страховой компании. Он был активным игроком на фондовой бирже, где играл с переменным успехом. (Подобно многим своим самым знаменитым современникам, он не смог предвидеть Великой депрессии 1929 года.) Играя на бирже, он обогатил Королевский колледж, а к 1936 году превратил свое скромное наследственное состояние в круглую сумму, эквивалентную нынешним 10 млн. фунтов стерлингов18. Во время Второй мировой войны он планировал британское военное финансирование, а по ее окончании добился в переговорах с США выделения ими Британии крупной суммы и написал большую часть текста Бреттон-Вудских соглашений, определивших устройство послевоенной международной валютной системы. Идеи приходили к Кейнсу так стремительно и в таких количествах, что он часто вступал в противоречие с тем, что говорил или писал прежде. Это его не беспокоило. «Когда меня удается убедить, что я не прав, — писал он, — я меняю свою точку зрения. А как поступаете вы?»19
В 1921 году Кейнс закончил книгу, озаглавленную «Курс теории вероятности» («A Treatise on Probability»). Он начал работу над ней вскоре после окончания Кембриджского университета и работал с перерывами около пятнадцати лет; он даже брал ее с собой во время своих путешествий за границу, включая путешествие верхом по Греции с художником Дунканом Грантом. Он старался выражать новые идеи с ясностью, которую так ценил, и никогда не прерывал занятий философией, начатых еще в Кембридже, где, как он позже вспоминал, все постоянно задавали друг другу вопрос «"Что вы в точности имеете в виду?". Если в результате перекрестного допроса выяснялось, что вы не имели в виду ничего определенного, возникало сильное подозрение, что вы говорите просто ни о чем»20. «Курс теории вероятности», являющийся блистательным исследованием сущности и приложений вероятностных законов, содержит критический анализ работ мыслителей, большинство из которых уже упоминались на страницах этой книги. В отличие от Найта Кейнс не проводит категорического разграничения между неопределенностью и риском; в менее точной манере он противопоставляет в наших размышлениях о будущем определимое неопределимому. Тем не менее, как и Найт, он не терпел решений, основанных на частоте событий в прошлом: он чувствовал, что гальтоновская аналогия с горошком уместна при анализе явлений природы, но не человеческого поведения. Он отвергал прогнозирование на основе событий и предпочитал прогнозы на основе предположений. Его любимым выражением было: «Степень убежденности — или, как часто говорят, априорная вероятность»21. Книга Кейнса начинается с критики традиционной точки зрения на вероятность; ее жертвами стали многие из наших старых знакомых, включая Гаусса, Паскаля, Кветеле и Лапласа. Он утверждает, что теория вероятностей имеет мало отношения к реальным жизненным ситуациям, в особенности когда используют «опрометчивые методы и максималистские претензии школы Лапласа»22. Объективная вероятность будущего события существует — «это не то, что называют результатом человеческой причуды», — но наше невежество не позволяет точно знать величину вероятности; мы можем оперировать только оценками. «Маловероятно, — утверждает Кейнс, — что мы сможем открыть метод определения конкретной вероятности без помощи интуиции или прямого суждения... Предположение не является вероятным, поскольку мы его таким полагаем»23. Кейнс считал, что «мы переходим от мнения теоретиков к опыту людей практики». Он подшучивал над фантастически приблизительными методами, которые используют многие страховые компании для вычисления страховых взносов. Он сомневается, что два одинаково квалифицированных страховых маклера способны достичь одинаковых результатов в одной и той же ситуации: «Достаточно, если он назначит величину взноса, превышающую возможный риск»24. Он припоминает, как 23 августа 1912 года компания Ллойда объявила о шансах на победу трех кандидатов на выборах президента США: сумма вероятностей стать президентом оказалась равной 110%! Ставки перестрахования «Варатага», судна, исчезнувшего у берегов Южной Африки, менялись ежечасно, когда были найдены обломки потерпевшего крушение корабля и распространились слухи, что при подобных обстоятельствах корабль оставался на плаву без серьезных повреждений в течение двух месяцев, пока не был обнаружен. При этом вероятность того, что «Варатаг» затонул, оставалась постоянной, несмотря на значительные колебания рыночных оценок этой вероятности. Кейнс пренебрежительно относился ко всему, что он считал имеющим отношение к закону больших чисел. Простой факт, что сходные события неоднократно наблюдались в прошлом, — слабое оправдание убежденности, что вероятно их повторение в будущем. Скорее, наша уверенность в некоем исходе должна бы усилиться, если мы обнаружим «ситуацию, в которой каждый новый ряд событий по некоторым существенным признакам отличается от других»25. Он презирал среднее арифметическое как «очень неадекватную аксиому». Вместо сложения результатов наблюдений и последующего деления полученной суммы на общее число наблюдений «одинаковые предположения должны иметь следствием одинаковые соображения, если... оценки перемножить, вместо того чтобы складывать»26. Допуская, что среднее арифметическое просто использовать, Кейнс ссылается на французских математиков, которые указывали, что если природе нет никакого дела до трудностей анализа, то и человечеству незачем об этом беспокоиться.
Кейнс отказался от термина «событие», использовавшегося его предшественниками в теории вероятностей, потому что этот термин предполагает, что прогнозы должны зависеть от математической частоты прошлых событий. Он предпочитал термин «предположение», который отражает степень веры в вероятность будущих событий. Брэдли Бетмен (Bateman), экономист, который преподавал в Гриннел-колледже, заметил, что вероятность для Кейнса является основой для анализа и оценки предположений27. Если Кейнс полагал, что вероятность отражает степень веры в определенное будущее и что прошлые события являются лишь скромной частью исходной информации, можно сделать вывод, что он рассматривал вероятность как субъективное понятие. Но это не так. Будучи во многих отношениях человеком современным, он порой обнаруживает свои викторианские корни. Во время работы над «Курсом теории вероятности» он верил, что все разумные люди в свое время узнают истинную вероятность определенных исходов и придут к одинаковой степени веры в них. «Когда заданы факты, определяющие наше знание, тогда то, что в этих обстоятельствах вероятно, а что невероятно, объективно зафиксировано и более не зависит от нашего мнения»28. Уступая критике этой нереалистической точки зрения, Кейнс впоследствии начал уделять больше внимания тому, как неопределенность влияет на решения вообще и на мировую экономику в частности. В одном месте своего «Курса» он провозглашает: «Восприятие вероятности, веса и риска — всё это очень сильно зависит от суждения» и «Основа нашей степени убежденности — часть нашего умственного снаряжения»29. Чарлз Ланге (Lange), статистик и старый друг Кейнса, однажды с удовлетворением заметил, что «Мейнард все-таки предпочел жизнь, а не алгебру».
Размышления Кейнса об экономике постоянно вращались вокруг понятия неопределенности — неопределенности того, сколько семья сбережет или потратит, какую часть своих сбережений она потратит в будущем (и когда она ее потратит) и, что еще важнее, какую прибыль принесут определенные вложения в основной капитал. Решения деловых кругов о том, сколько и когда потратить на новое строительство, новое оборудование, новые технологии и новые методы производства, образуют движущую силу экономики. Однако тот факт, что эти решения, в сущности, необратимы, делает их чрезвычайно рискованными вследствие отсутствия объективных данных о вероятности того, что они приведут к желаемым результатам. Как заметил Фрэнк Найт за пятнадцать лет до опубликования «Общей теории» Кейнса, «причиной проблемы неопределенности в экономике является ориентированный на будущее характер самого экономического процесса»30. Поскольку экономическая обстановка постоянно меняется, все экономические данные соотносятся с их собственным периодом времени. В силу этого они представляют собой крайне утлую основу для обобщений. Реальное время более значимо, чем абстрактное, и прошлые наборы данных редко бывают уместны. Если вчера вероятность чего-либо оценивалась в 75%, то чаще всего неизвестно, какова она будет завтра. Система, которая не может положиться на частотное распределение прошлых событий, особенно подвержена неожиданностям и колебаниям. Кейнс не видит смысла в рассмотрении гипотетической экономики, в которой прошлое, настоящее и будущее сливаются безликой машиной времени в единый момент. Вынужденная безработица и низкая прибыльность стали слишком частым явлением, чтобы предполагать, что экономика функционирует по классическим образцам. Если люди решают сберегать больше и тратить меньше, потребительские расходы упадут, а следом за ними и величина инвестиций. В любом случае в ответ на рост склонности к сбережению процентные ставки должны упасть. Кейнс утверждает, что процент — это вознаграждение за расставание с деньгами, а не за воздержание от потребления. Даже если процентные ставки падают, они могут не дойти до настолько низкого уровня, чтобы поощрить бизнесменов рискнуть дальнейшим вложением капитала в экономической ситуации, в которой жизнерадостный натиск отсутствует, а переход к новому набору решений представляется непозволительной роскошью. Решения, будучи принятыми, ведут к возникновению новой ситуации, которая никак не может изменить уже сделанное. Другой причиной снижения инвестиционных расходов может быть тот факт, что предприятия исчерпали все возможности для получения прибыли. Кейнс однажды заметил: «Средневековье строило соборы и пело панихиды... Две мессы для мертвеца вдвое лучше, чем одна; но этого нельзя сказать о двух железных дорогах между Лондоном и Йорком»31. Эта же мысль прозвучала в известной песне, которая пользовалась популярностью во времена Великой депрессии, «Братья, можете истратить грош?»: «Я строил дом, но он уже построен. / Я рельсы клал, но поезда пошли». Кейнс и его последователи занялись исследованием денежного обращения и контрактами, чтобы показать, что в реальном мире правит неопределенность, а не математическая вероятность. Потребность в ликвидности и стремление закрепить будущие операции с помощью имеющих юридическую силу контрактов свидетельствуют о том, что в принятии решений господствует неопределенность. Мы больше не хотим руководствоваться математической вероятностью прошлых событий. Кейнс отказался от теорий, пренебрегающих неопределенностью. «Явная непригодность [классической доктрины] для целей научных прогнозов, — отмечает он, — значительно подорвала с течением времени престиж ее адептов»32. Экономисты-классики, обвиняет он, стали похожи на «Кандидов, которые, удалившись из мира ради возделывания своих садов, учат, что всё к лучшему в этом лучшем из миров, лишь бы предоставить его самому себе»33. Раздраженный этими теориями в стиле Кандида, Кейнс предложил политику, прямо противоположную системе laissez-faire, — активизацию роли правительства не только для компенсации падения частного спроса правительственными заказами, но и для уменьшения степени неопределенности в экономике. Со временем мы поняли, что предложенное Кейнсом лекарство в некоторых отношениях было хуже самой болезни и что в его анализе были другие, менее наглядные пороки. Впрочем, это не может умалить значение его вклада в экономическую теорию и в понимание риска. В конце состоящей из единственного параграфа первой главы «Общей теории» Кейнс написал: «Характеристики... предполагаемые классической экономической теорией, не имеют отношения к экономическому обществу, в котором мы живем, и попытки применить это учение к фактам опыта вводят в заблуждение и ведут к катастрофическим последствиям»34. Учитывая состояние мировой экономики в 1936 году, Кейнс вряд ли мог думать иначе. Неопределенность должна занять центральное место в новой экономической теории.
В 1937 году, в ответ на критику «Общей теории», Кейнс так суммировал свои взгляды: Под неопределенным знанием... я не подразумеваю просто различие между тем, что достоверно известно, и тем, что только вероятно. В этом смысле игра в рулетку не имеет отношения к тому, что я называю неопределенным... Я использую это понятие в том смысле, в каком неопределенны перспективы новой европейской войны, или цен на медь, или ставки процента через двадцать лет, или устаревания новых изобретений... В подобных случаях вообще нет никаких научных предпосылок для вычисления какой-либо вероятности. Мы просто не знаем!35 Потрясающая идея заложена в утверждении, что мы просто не знаем. Слова Кейнса не столько пугают нас, сколько несут благую весть: мы не узники неизбежного будущего. Неопределенность делает нас свободными. Рассмотрим альтернативу. Все мыслители от Паскаля до Галь-тона говорили нам, что законы вероятности действуют, потому что мы не контролируем результат следующего броска кости, или какой будет ошибка следующего измерения, или влияние статического нормального состояния, к которому в конце концов должен прийти процесс. В этом контексте всё в жизни уподобляется кувшину Якоба Бернулли: мы можем вытянуть любой камешек, но не мы выбираем его цвет. Как напоминал нам Лаплас, «все события, даже те, которые вследствие их незначительности не представляются нам следующими великим законам природы, подчиняются им с той же необходимостью, с какой всходит и заходит солнце». Короче говоря, речь о неизбежности. Там, где все подчиняется законам вероятности, мы уподобляемся дикарям или игрокам, у которых есть единственный выход — бормотать заклинания своим богам. Ни наши дела, ни наши суждения, ни наша жизненная энергия не оказывают ни малейшего влияния на конечный итог. Может показаться, что мир, в котором вероятность всегда вычислима, уютен и благоустроен, но каждый из нас может с тем же успехом удалиться в тюремную камеру без окон — такую судьбу вполне могло уготовить трепыханье крыльев бабочки миллиард лет назад. Какая скука! Но, благодарение Богу, мир чистой вероятности существует только на бумаге или, возможно, в частных описаниях явлений природы. Он не имеет отношения к дышащему, потеющему, беспокойному и созидающему человеку, старающемуся найти свою дорогу к свету. Это хорошие новости, а не плохие. Стоит понять, что мы не обязаны подчиняться повороту колеса рулетки или раскладу карт, — и мы свободны. От наших решений многое зависит. Мы можем изменить мир. Экономические предписания Кейнса открывают, что, принимая решения, мы действительно изменяем мир. Приведет ли это изменение к добру или к худу, зависит от нас. Вращение колеса рулетки не имеет к этому никакого отношения.
Глава 14 Человек, который считал всё, кроме калорий В предыдущей главе мы познакомились с тем, как Фрэнк Найт отвел неопределенности центральную роль в анализе риска и принятии решений, а Кейнс со свойственными ему энергией и красноречием атаковал основные предпосылки классической экономической науки. Однако вера в действенность рационального поведения и измерений в стратегии риска устояла, несмотря на все неурядицы Великой депрессии и Второй мировой войны. Соответствующие теории двинулись по двум резко расходящимся направлениям: одно развивалось последователями Кейнса («Мы просто не знаем»), второе — последователями Джевонса («Удовольствие, боль, труд, полезность, ценность, богатство, деньги, капитал и т. д. — это всё понятия, подлежащие квантификации»). В течение четверти века, последовавшей за публикацией Кейн-сом «Общей теории», серьезный прогресс в понимании риска и неопределенности был достигнут в рамках теории стратегических игр. Это был прагматичный подход, уходящий корнями в культуру Викторианской эпохи: для истолкования человеческого поведения необходимо измерение. Теория игр, сосредоточившая свои усилия на анализе принятия решений, мало походила на другие теории, которые ранее возникали на основе анализа случайных игр. Несмотря на свою укорененность в идеологии XIX века, теория игр осуществила драматический разрыв с предшествующими усилиями привнести математическую неизбежность в анализ принятия решений. В теориях полезности как Даниила Бернулли, так и Джевонса человек принимал решения в изоляции, не имея представления, да и не интересуясь тем, что делают другие. В теории игр уже не изолированный человек, а двое или более людей стараются максимизировать свои выгоды одновременно, зная о целях, выгодах и возможных действиях других. Таким образом, теория игр привнесла принципиально новый аспект в понимание неопределенности. Предшествующие теории принимали неопределенность как жизненную данность и мало занимались ее происхождением. Теория игр показала, что истинным источником неопределенности являются намерения других. С этой точки зрения почти всякое принимаемое нами решение является результатом ряда переговоров, в которых мы стараемся снизить неопределенность, давая другим то, что они хотят, в обмен на то, чего хотим мы. Подобно покеру и шахматам, реальная жизнь является стратегической игрой, подкрепляемой контрактами и рукопожатиями для защиты от мошенников. Но в отличие от покера и шахмат мы редко можем рассчитывать на «победу» в этих играх. Выбор альтернативы, обещающей наибольшую выгоду, как правило, создает наибольший риск, потому что он может спровоцировать усиленную защиту со стороны игроков, которые в результате наших усилий должны проиграть. Поэтому мы обычно выбираем компромиссные альтернативы, которые могут побудить нас заключить лучшую из худших сделок; для описания таких решений теория игр использует термины «максиминные» и «минимаксные» решения. Подумайте о соотношениях продавец—покупатель, землевладелец—арендатор, муж—жена, кредитор—должник, «Дженерал моторе»—Форд, родители—дети, президент—конгресс, водитель—пешеход, хозяин—служащий, горшок—тесто, солист—аккомпаниатор.
Теория игр была придумана поразительно одаренным физиком Джоном фон Нейманом (fon Neumann, 1903-1957)1. Фон Пейман способствовал разработке квантовой механики в Берлине в 1920-х годах и сыграл важную роль в создании первой американской атомной, а позднее и водородной бомбы. Кроме того, он изобрел числовой компьютер, был замечательным метеорологом и математиком, мог перемножать в уме восьмизначные числа, любил неприличные шутки и декламировал непристойные пятистишья. Работая с военными, он предпочитал адмиралов генералам, потому что первые могли больше выпить. Его биограф Норман Макрэ характеризует его как «весьма обходительного со всеми, кроме... двух многострадальних жен», одна из которых однажды заметила: «Он может сосчитать всё, кроме калорий»2. Коллега, интересовавшийся вероятностным анализом, как-то попросил фон Неймана дать определение определенности. Фон Нейман ответил, что, проектируя дом, надо убедиться, что пол в гостиной никуда не денется. Для этого необходимо «подсчитать вес большого рояля и шести человек, взгромоздившихся на него попеть. Потом утроить вес». Это гарантирует уверенность. Фон Нейман родился в Будапеште в состоятельной, культурной и благополучной семье. В то время Будапешт был шестым по величине городом в Европе, растущим и процветающим, с первым в мире метрополитеном. Уровень грамотности в нем уже тогда составлял 90%. Более 25% населения были евреи, включая фон Нейманов, хотя сам Джон фон Нейман вспоминал о своем еврейском происхождении, только рассказывая анекдоты. Он был не единственным знаменитым выходцем из Будапешта в период перед Первой мировой войной. Его современниками были столь же знаменитые физики Лео Сциллард и Эдвард Теллер, а также известные представители артистического мира Георг Шолти, Пол Лукас, Лесли Ховард (урожденный Ласло Штайнер), Адольф Цукор, Александр Корда и, возможно, самая знаменитая из всех За-За Габор. Учился фон Нейман в ведущем учебном заведении Берлина, которое сочло, что исследования Эйнштейна не заслуживают финансовой помощи3. Затем он переехал в Гёттинген, где встретился с такими выдающимися учеными, как Вернер Гейзенберг, Энрико Ферми и Роберт Оппенгеймер. Во время своего первого визита в Соединенные Штаты в 1929 году фон Нейман влюбился в эту страну, и большая часть его карьеры, за исключением периода работы на правительство США, связана с Центром научных исследований в Принстоне. Его первоначальное жалованье в 1937 году составило 10000 долларов, что по покупательной способности превышает нынешние 100000 долларов. Заметим для сравнения, что Эйнштейн, когда поступал на работу в тот же центр, попросил 3000 долларов жалованья (ему положили 16 000). Впервые фон Нейман изложил свою теорию стратегических игр в статье, которую представил в Математическое общество Гёттин-генского университета в 1926 году в возрасте 23 лет; статья была напечатана два года спустя. Роберт Леонард (Leonard) из Квебекского университета, ведущий историк теории игр, подозревает, что эта статья была не столько продуктом «вдохновения», сколько попыткой фон Неймана направить свою беспокойную фантазию на предмет, привлекавший некоторое время внимание немецких и вен-герских математиков. Его интересовала чисто математическая сторона вопроса и очень мало волновала или не волновала вовсе проблема принятия решений как таковая. Хотя предмет рассмотрения статьи на первый взгляд казался тривиальным, он весьма сложен, особенно с математической точки зрения. В статье рассматривалась рациональная стратегия детской игры «чет и нечет», в которой два игрока одновременно открывают по монетке. Если открываются два орла или две решки, выигрывает игрок А. Если на монетах выпадают разные стороны, выигрывает игрок В. Когда я был мальчишкой, мы играли в вариант этой игры. По счету «три» мы открывали сжатые кулаки и, выставляя один или два пальца, кричали «Нечет!» или «Чет!». Согласно фон Нейману, «если ваш противник хотя бы не дурак», надо стараться не столько угадать его намерения, сколько не открыть свои. Любая стратегия, ориентированная на выигрыш, а не на избежание проигрыша, неизменно приводит к проигрышу. (Заметьте, что здесь впервые идет речь об анализе возможности проигрыша как неотъемлемой части управления риском.) Поэтому следует класть монету кверху орлом или решкой случайным образом, моделируя машину, которая будет открывать каждую сторону монеты с вероятностью 50%. Следуя этой стратегии, не приходится рассчитывать на выигрыш, но зато и проиграть так невозможно. Если вы стараетесь выиграть, показывая орла шесть раз в каждых десяти играх, противник разгадает план игры и легко победит. Он будет показывать в каждых десяти играх шесть раз решку, если ему нужен «нечет», и шесть раз орла, если «чет». Таким образом, единственная рациональная стратегия для обоих игроков заключается в том, чтобы открывать монету случайным образом. Тогда после достаточно большого количества игр в половине случаев выпадет «чет», а в половине — «нечет». Эта игра быстро надоедает. Математический результат, полученный фон Нейманом, заключается в доказательстве того, что это единственный исход, если оба игрока используют рациональную стратегию игры. Это не закон вероятности, утверждающий, что шансы в этой игре 50 на 50. Скорее, сами игроки являются причиной такого результата. Статья фон Неймана в этом плане недвусмысленна: Даже если правила игры не содержат элементов «риска» (т. е. вытягивания из урны)... зависимость от... статистического элемента настолько свойственна игре самой по себе (если не всему миру), что нет необходимости вводить его искусственно4. Внимание, которое привлекла к себе статья фон Неймана, показывает, что в ней было нечто важное с точки зрения математики. Лишь позднее ему самому стало ясно, что теория игр затрагивает не только математиков. В 1938 году, когда фон Нейман еще был в Принстоне и общался с Эйнштейном и его друзьями, он встретил экономиста из Германии Оскара Моргенштерна (Morgenstern), который стал его незаменимым помощником. Он немедленно оценил теорию игр и сказал фон Нейману, что хочет написать о ней статью. Хотя его математические способности были не на уровне задачи, Моргенштерн убедил фон Неймана сотрудничать с ним в написании статьи, и это сотрудничество растянулось на все годы войны. Результатом их совместных усилий стала «Теория игр и экономическое поведение» («Theory of Games and Economic Behavior») — классическая работа как собственно по теории игр, так и по ее применению в ходе принятия решений в экономике и бизнесе. Они закончили объемистую книгу — 650 страниц — в 1944 году. Издательство Принстонского университета, сославшись на войну и дефицит бумаги, отказалось ее публиковать. В конце концов один из членов семьи Рокфеллера в 1953 году субсидировал издание. Экономические проблемы не были чем-то совершенно новым для фон Неймана. Он и раньше интересовался экономикой, пытаясь понять, чего можно достичь, используя математику для разработки модели экономического роста. Он был не только математиком, но и физиком, а потому был особенно восприимчив к понятию равновесия. «Поскольку экономисты сплошь и рядом имеют дело с количествами, — писал фон Нейман, — экономика должна быть математической наукой по существу, если не по языку... тесная аналогия со статистической механикой». Моргенштерн родился в Германии в 1902 году, но вырос и получил образование в Вене. К 1931 году он был уже достаточно признан как экономист, чтобы стать преемником Фридриха фон Хайе-ка (fon Hayek) на посту директора престижного Венского института исследований делового цикла. Хотя он был христианином с примесью антисемитизма, в 1938 году, после вторжения Германии в Австрию, он уехал в Соединенные Штаты и скоро нашел место на экономическом факультете в Принстоне5. Моргенштерн не верил в возможность использования экономической науки для предсказания деловой активности. Он доказывал, что потребители, бизнесмены и политики учитывают прогнозы и в соответствии с ними меняют свои решения и действия. Эти изменения заставляют прогнозистов изменять прогнозы, побуждая публику к новым реакциям. Моргенштерн сравнивал эту постоянную обратную связь с игрой Шерлока Холмса и профессора Мориарти, старающихся перехитрить друг друга. Отсюда следовал вывод, что в экономике статистические методы пригодны только в описательных целях, «но твердолобые, кажется, не отдают себе в этом отчета»6. Моргенштерна раздражала идея о возможности идеального прогноза, господствовавшая в экономической теории XIX века. Никто, утверждал Моргенштерн, не может знать, что собираются делать все остальные в любой данный момент: «Неограниченный прогноз и экономическое равновесие взаимно несовместимы»7. Фрэнк Найт высоко оценил этот вывод и предложил перевести статью Моргенштерна с немецкого на английский. Кажется, Моргенштерн был лишен шарма. Нобелевский лауреат Пол Самуэльсон (Samuelson), автор самого популярного в течение нескольких десятилетий учебника по экономике, так писал о нем: «Наполеоновский комплекс... постоянно ссылается на авторитет каких-то физиков или других ученых».(Кажется, их «любовь» была взаимной. Моргенштерн был невысокого мнения о математических познаниях Самуэльсона. Наябедничав, что, по словам фон Неймана, Самуэльсон имеет «смутное представление о стабильности», он пророчил, что «ему и тридцати лет не хватит, чтобы понять теорию игр!», см.: [Leonard, 1994, р. 494п]. Репке, тоже христианин, намного откровеннее, чем Моргенштерн, рассказывал о причинах, заставивших его покинуть гитлеровскую Германию). Другой современник утверждал, что принстонские экономисты «просто терпеть не могли Оскара»9. Да и сам Моргенштерн жаловался на недостаток внимания к своему любимому детищу. После посещения Гарварда в 1945 году он заметил, что «никто из них» не проявил никакого интереса к теории игр10. В 1947 году его огорчил экономист Репке, назвавший теорию игр «досужей венской болтовней» 2), а в 1950 году при посещении группы выдающихся экономистов в Роттердаме он обнаружил, что они «знать ничего не хотели о [теории игр], потому что она их раздражает». Моргенштерн в свою очередь презирал лишенную строгости трактовку Кейнсом проблемы определенности и отзывался о его «Общей теории» как о «просто чудовищной работе», но, даже будучи энтузиастом использования математических методов в экономическом анализе, постоянно жаловался на свои проблемы с новыми материалами, которые подсовывал ему фон Нейман11. К фон Нейману Моргенштерн относился с благоговением. «Он загадочный человек, — написал он как-то. — Столкнувшись с чем-то научным, он весь загорается, проясняется, оживает, потом гаснет, погружается в спячку, ведет поверхностные сумбурные разговоры... В нем есть что-то непостижимое».
Перспектива увязать холодный математический расчет теории игр с коллизиями экономики показалась заманчивой и математику, интересующемуся экономикой, и экономисту, увлеченному математикой. Дополнительным стимулом к их сотрудничеству послужило разделяемое обоими ощущение того, что, говоря словами Моргенштерна, использование математики в экономике пребывало тогда «в плачевном состоянии»12. Действовали здесь и высшие мотивы: стремление сделать математику столь же мощным инструментом анализа общества, каким она проявила себя в естественных науках. Но если в наши дни такое стремление приветствовалось бы большинством представителей общественных наук, в конце 1940-х годов оно, вероятнее всего, и было главной причиной отторжения самой идеи применения теории игр. В то время академическим курятником правил Кейнс, а он считал невозможным математическое описание человеческого поведения. «Теория игр и экономическое поведение» не теряла времени на апологию применения математических методов в ходе принятия экономических решений. Фон Нейман и Моргенштерн отвергли как «совершенно ошибочный» аргумент, будто человеческие и психологические аспекты экономики препятствуют использованию математического анализа. Указывая на то, что математику начали использовать в физике только в XVI веке, а в химии и биологии — в XVIII, они утверждали, что перспективы математизации этих наук «в эти ранние периоды вряд ли могли быть лучшими, чем в экономике — mutatis mutandis* (С соответствующими изменениями, на свой манер (лат.). — Примеч. Переводчика) — сегодня»13. Фон Нейман и Моргенштерн отвергали возражения, основанные на том, что их строгие математические операции и упор на кван-тификацию являются нереалистическими упрощениями, потому что «рядовой человек... осуществляет экономическую активность в сфере господства неопределенности»14. Ведь в конце концов свет и тепло люди тоже воспринимают нечетко:
Чтобы превратить физику в науку, эти явления (тепло и свет) нужно было измерить. А в результате люди начали использовать — прямо или косвенно — результаты таких измерений даже в повседневной жизни. То же самое может случиться в будущем и в экономике. Когда с помощью теории, использующей [измерения], удастся достичь более полного понимания человеческого поведения, человеческая жизнь может существенно измениться. А это означает, что изучение этих проблем не обязательно представляет собой упадок науки»15.
В «Теории игр и экономическом поведении» анализ начинается с простого примера: человек выбирает между двумя альтернативами, как при выборе между орлом и решкой в игре в «чет и нечет». Но на этот раз фон Нейман и Моргенштерн проникают значительно глубже в природу принятия решений, заставляя человека делать выбор не между двумя простыми возможностями, а между двумя комбинациями событий. Они рассматривают пример с человеком, который предпочитает кофе чаю, а чай молоку16. Ему задают вопрос: «Что ты предпочтешь — чашку кофе или стакан, в котором с шансами 50 на 50 будет чай или молоко?» Естественно, он выберет чашку кофе. А если сменить его предпочтения и задать тот же вопрос? Пусть на этот раз он предпочитает молоко и чаю, и кофе, но все-таки лучше кофе, чем чай. Теперь выбор между гарантированным кофе и возможностью с равной вероятностью получить чай или молоко становится менее очевидным, чем в первом случае, потому что неопределенный исход сулит ему выполнение главного желания (молоко) или же то, что ему нужно меньше всего (чай). Изменяя вероятности нахождения в стакане чая или молока и спрашивая, в какой момент для человека гарантия получения кофе и игра на получение молока с риском получить вместо него нежеланный чай станут одинаково предпочтительны, мы можем получить количественную оценку — фиксированное число — для измерения степени предпочтительности молока, кофе и чая. Пример становится более наглядным, если перейти к технике измерения выгоды — степени удовлетворенности — от обладания одним долларом по сравнению с выгодой от получения второго доллара, то есть обладания двумя долларами. Теперь для человека лучшим исходом должно быть обладание двумя долларами, которое мы поставим на место получения молока в предыдущем примере; отсутствие денег займет теперь место чая, как наименее благоприятного исхода, и один доллар займет место среднего по предпочтительности варианта — получения кофе. Сделаем опыт более реалистичным и будем измерять полезность, т.е. степень удовлетворения. Пусть наш человек выбирает между гарантированным одним долларом и возможностью получить либо еще один, либо остаться без ничего. С вероятностью 50% человек получает два доллара и с вероятностью 50 — ноль, то есть математическое ожидание в игре равно одному доллару. Если человек скажет, что ему безразлично, играть ли, чтобы с равными шансами получить два доллара или ничего, или получить без игры один доллар, можно считать, что он нейтрален к риску при столь малых ставках. В соответствии с формулой, предложенной фон Нейманом и Моргенштерном, вероятность самой желанной возможности — в этом случае получить два доллара — определяет, насколько человек предпочитает один доллар вместо нуля по сравнению с тем, насколько он предпочитает два доллара вместо нуля. Здесь 50% означают, что его предпочтение получить один доллар вместо нуля составляет половину от его предпочтения получить два доллара вместо нуля. В такой ситуации полезность двух долларов вдвое больше полезности одного доллара. Ответы других людей или при других обстоятельствах могут сильно отличаться. Посмотрим, что произойдет, если мы увеличим ставки и изменим вероятности в игре. Предположим теперь, что этот человек безразличен к альтернативе гарантированно получить 100 долларов или игре с 67% вероятности получить 200 долларов и с 33% вероятности не получить ничего. Математическое ожидание в этой игре составляет 133 доллара; иными словами, предпочтительность гарантированного исхода — получения 100 долларов — теперь больше, чем когда речь шла только о паре долларов. 67% вероятности получения 200 долларов означают, что его предпочтение получить 100 долларов вместо нуля составляет две трети от предпочтения получить 200 долларов вместо нуля: полезность от первых 100 долларов выше, чем полезность от последующих 100 долларов. Полезность большей суммы уменьшается, когда сумма денег, подвергающаяся риску, увеличивается с однозначного числа до трехзначного. Если все это кажется вам знакомым, то так оно и есть. Рассуждение здесь то же самое, что и при вычислении «эквивалента определенности», который мы получали из фундаментального принципа Бернулли, утверждавшего, что полезность от увеличения богатства обратно пропорциональна количеству уже имеющегося богатства (см. гл. 6, с. 123-124). В этом суть избежания риска — насколько мы готовы принимать решения, способные побудить других принять решения, результаты которых будут неблагоприятны для нас. Эта линия анализа ведет от фон Неймана и Моргенштерна прямо к классическим рациональным методам, потому что разумные люди в
|