Передача и приём электронной информации
Мы не задумываемся о том, как наш мобильный телефон передаёт и принимает электронную информацию. Под электронной информацией мы понимаем наш голос, письменный текст или фотографию. Каким же образом кодируется такая информация, и каким образом передаётся в пространство? Мы не будем описывать процесс кодирования информации, но отметим, что её носителями вдоль проводов являются электроны Известно, что в каждом кубическом сантиметре медного провода содержится Рис. 145. а) и b) – cхемы изменения ориентации свободных электронов
Направление суммарного магнитного поля всех свободных электронов в проводе формирует вокруг него магнитное поле (рис. 145, а, b), направление которого меняется с изменением направления векторов магнитных моментов Когда свободные электроны в проводе сориентированы вдоль его оси и их спины Возникает вопрос: будет ли магнитное поле, формируемое электронами вокруг провода, излучаться в пространство при смене направления ориентации электронов в нём? Удивительным является то, что физики ХХ века до сих пор не имеют ответа на этот вопрос. Попытаемся найти его [270], [276], [277]. Можно, конечно, допустить, что при смене направления магнитного поля вокруг провода (рис. 145, а, b) оно излучается в пространство и распространяется в нём со скоростью света. Проверим работоспособность такой гипотезы. Если провод передающей антенны имеет радиус 0,01 м и на его поверхности генерируется магнитное поле напряженностью 0,001 Тл, то линейная удельная напряженность магнитного поля на поверхности провода составит
При удалении магнитного кольца (магнитного кольцевого импульса) от поверхности антенны со скоростью света его радиус Но ведь астрофизики принимают сигналы от звёзд, которые, как они полагают, расположены от нас на расстоянии В XIX и ХХ веках считалось, что электромагнитное излучение является волновым. Оно формируется электрическими Как видно (52-55), это - уравнения в частных производных, поэтому они автоматически противоречат аксиоме Единства. Это противоречие усиливается независимостью Это сомнение базируется на массе противоречий между экспериментальными фактами и уравнениями Максвелла. Например, кольцевые магнитные поля вокруг провода (рис. 145, а, b) – строгий экспериментальный факт, а волна с одновременно и синусоидально меняющимися напряжённостями электрических В условиях, когда нет ни единого эксперимента, способного доказать формирование электромагнитных волн Максвелла (рис. 11, 145, с), правильность интерпретации результатов решений его уравнений вызывает сомнения. Но физики ХХ полностью игнорировали это и делали всё, чтобы доказать, что уравнения Максвелла (52-55) описывают излучение антенной передатчика именно такой волны, какая показана на рис. 11 и 145, с. Возникает вопрос: на чём базируют физики свою убеждённость в том, что излучение формируют электромагнитные волны Максвелла? Прежде всего на опытах Герца, который якобы доказал существование таинственного тока смещения ( У нас нет оснований упрекать Герца в ошибочности интерпретации этого эксперимента. В его время это была, пожалуй, единственно возможная интерпретация, так как понятие фотон ещё отсутствовало. Но у нас есть основания упрекнут всех его последователей, которые ничего не сделали для того, чтобы повторить его опыты на современном уровне и найти им правильную интерпретацию. Конечно, приближённые методы решения уравнений Максвелла могут давать результат, совпадающий с экспериментом. Суть этого совпадения заключается в том, что приближённые методы решения уравнений Максвелла основаны на использовании рядов Фурье, которые применяются при анализе экспериментальной информации близкой к синусоидальной. Этот же метод используется для установления связи между уравнениями Максвелла и экспериментальными данными. То есть физическая суть самой электромагнитной волны здесь никак не представлена. А ведь эта волна может иметь разное физическое наполнение, которое не отражают измерительные приборы. В таких условиях совпадение экспериментального результата с теоретическим может быть случайным, а его интерпретация - полностью ошибочной [270], [276], [277]. Из этого следует необходимость повторения опытов Герца с использованием современных средств. И они уже проведены с помощью прибора ИГА-1 (рис. 13). Результаты этих опытов убедительно доказали ошибочность представлений о волновой природе электромагнитного излучения, подобному максвелловской электромагнитной волне (рис. 11, 145, с). Прибор ИГА-1 (рис. 13), имея чувствительность 100 пиковольт, принимает естественные излучения с частотой 5 кГц на антенну диаметром 30 мм. Длина волны такого излучения равна Если учесть, что уравнения Максвелла (52-55) работают в условиях, когда длина электромагнитной волны соизмерима с длиной антенны, то эксперимент с прибором ИГА -1 - убедительное доказательство того, что носителями излучений являются фотоны (рис. 20), но не электромагнитные волны Максвелла (рис. 11, 145, с). Это обусловлено тем, что размер антенны (круглый диск) у прибора ИГА – 1 на 6 порядков меньше длины максвелловской волны. Из этого следует, что прибор ИГА – 1 принимает не максвелловскую (рис. 11, 145, с), а фотонную волну (рис. 14). Излучение электронами фотонов при их возбуждении – экспериментальный факт, подтверждённый миллионами спектральных линий атомов, ионов и молекул. Импульсное воздействие на электроны в проводе – тоже процесс их возбуждения, который сопровождается излучением импульсов фотонов. Есть основания предполагать, что импульсное воздействие на электроны в начале провода передаётся всем электронам вдоль провода со скоростью близкой к скорости света (рис. 146) [270], [276], [277]. Вполне естественно, что с такой же скоростью передаётся и информация, закодированная в этом импульсе. На этом принципе основана работа всех систем, передающих информацию по проводам, в том числе и работа Интернета. Представим, что электроны в проводе не только формируют магнитные поля вокруг него (рис. 145, а, b), но и излучают импульсы фотонов (рис. 146).
Рис. 146. Формирование импульсов электронов вдоль провода и излучение им фотонов в пространство
Из этого следует, что носителями информации в пространстве являются импульсы фотонов, излучаемые свободными электронами антенны, при воздействии на них импульсов напряжения. Есть основания полагать также, что в этом процессе принимают участие и валентные электроны, связывающие атомы в молекулы. Это предположение базируется на известном факте фонового шума, который генерируется фотонами, формирующими температуру антенны, равную температуре среды, окружающей её [270], [276], [277]. Известно, что с изменением температуры тела меняется его объём. Обусловлено это тем, что при поглощении и излучении фотонов валентными электронами у них изменяются энергии связи, а значит и расстояния между атомами в молекуле или между молекулами в их кластерах. Из этого следует, что если валентные электроны поглощают и излучают фотоны, формирующие температуру среды, то эти электроны вместе со свободными электронами принимают участие в формировании импульса фотонов при воздействии электрического потенциала на свободные электроны. Возникает вопрос: как велико расстояние между молекулами и достаточно ли оно для того, чтобы свободные электроны могли перемещаться в проводе и менять свою ориентацию? Размер электрона Свободные электроны
где Самое главное в том, что напряженность магнитного поля Мы уже отметили, что температуру окружающей среды формируют фотоны с определенной длиной волны. При этом электроны атомов и молекул всего, что находится в этой среде, в том числе и электроны атомов анализируемой нами антенны, непрерывно поглощают и излучают эти фотоны, поддерживая необходимую температуру. Поэтому они являются передатчиками энергии и информации между всеми объектами среды. Это естественный процесс, благодаря которому существует все живое и неживое в Природе. Но он был полностью проигнорирован при интерпретации процессов передачи энергии и информации искусственными источниками, созданными человеком. Фотон – локализованное в пространстве магнитное образование, которое движется в пространстве со скоростью света. При этом он имеет такую магнитную структуру (рис. 20), у которой длина волны На рис. 146 импульсы излучаемых фотонов представлены в виде совокупности небольших шариков. Длина волны или радиус каждого фотона, входящего в состав импульса фотонов, на много порядков меньше расстояния между импульсами фотонов, называемого длиной волны излучения. У нас есть возможность определить длину волны или радиус каждого фотона, входящего в состав импульса фотонов. Длины волн единичных фотонов, излучаемых валентными электронами атомов антенны передатчика, зависят в обычных условиях от её температуры. Если она равна, например,
Это – фотоны инфракрасного диапазона. Мы уже описали, как они генерируют так называемый фоновый шум. Чтобы выделить искусственную информацию, передаваемую фотонами, излучаемыми электронами, необходимо увеличить возбуждение электронов, чтобы они излучали фотоны с большей энергией, чем фотоны, формирующие температуру окружающей среды и антенны. Различие длин волн фотонов, формирующих фоновый шум от длин волн фотонов (рис. 20), передающих информацию, зависит от интенсивности искусственного воздействия на электроны антенны. Но в любом случае, длина волны фотонов, порождаемых искусственными импульсами будет меньше длин волн или радиусов фотонов, формирующих эти импульсы (рис. 14, 146). Если передатчик излучает импульсы с длиной волны, например, 0,50 м в виде фотонов с длинами волн (радиусами) несколько меньшими тех, что формируют температуру среды вокруг антенны, например, с длинами волн
|