Лекция 3. Специальные типы полупроводниковых диодов
Разновидности полупроводниковых диодов. К специальным полупроводниковым диодам относятся приборы, в которых используются особые свойства р-п- переходов. управляемая полупроводниковая емкость — варикапы и варакторы, зенеровский и лавинный прибой — стабилитроны, туннельный эффект — туннельные и обращенные диоды, фотоэффект — фотодиоды, фотонная рекомбинация 0носителей зарядов — светодиоды; многослойные диоды — динисторы. Кроме того, к диодам^ относят некоторые типы приборов с тремя выводами, такие, как тиристоры и двухбазовые диоды. Варикапы — это полупроводниковые диоды, в которых используется барьерная емкость ^-«-перехода. Эта емкость зависит от приложенного к диоду обратного напряжения и с увеличением его уменьшается. Добротность барьерной емкости варикапа может быть достаточно высокой, так как она шунтируется достаточно высоким сопротивлением диода при обратном смещении. Схематическое изображение варикапа приведено на рис. 3.1 а, а его вольт-фарадная характеристика — на рис. 3.1 б. Условное обозначение варикапа содержит из пять элементов. Первый элемент обозначает материал, из которого изготовлен варикап (К — кремний). Второй элемент обозначает принадлежность диода к подклассу варикапов (В — варикап). Третий элемент — цифра, определяющая назначение варикапа (1 — для подстроечных варикапов, 2 — для умножи-тельных варикапов). Четвертый элемент — это порядковый номер разработки. И наконец, пятый элемент — соответствует разбраковке по параметрам. Так, например, на рис. 3.1 б приведена характеристика варикапа КВ117А. Теоретическое значение емкости варикапа можно определить по формуле
где Со — начальная емкость варикапа при С/д=0,!7д — напряжение на варикапе, \Ук — контакная разность потенциалов. Основными параметрами варикапа являются: его начальная емкость Со, добротность Ос, коэффициент перекрытия по емкости Кс. Добротность варикапа определяется отношением реактивной мощности варикапа б к мощности Р:
Рис. 3.1. Схематическое изображение варикапа (а) и зависимость емкости варикапа от обратного напряжения (б) · В дальнейшем все диоды (т. е. двухэлектродные приборы с п-р-переходом) обозначаются КД или О, как на рис. 3.1. Коэффициент перекрытия по емкости определяется как отношение максимальной емкости С„ах варикапа к его минимальной емкости С^т
Кроме этого, часто указывают температурный коэффициент емкости варикапа ас = АС/А Т и предельную частоту/пред, при которой добротность варикапа снижается до 6=1. Добротность варикапа увеличивается с увеличением обратного напряжения и с уменьшением рабочей частоты. Графики зависимости добротности варикапа КВ117А от частоты и обратного напряжения приведены на рис. 3.2. Эквивалентная схема варикапа приведена на рис. 3.3, где Се — барьерная емкость, /?щ — сопротивление перехода и шунтирующих его утечек, обусловленных · конструкцией варикапа, К„ — сопротивление материала полупроводника, ^-и-области и контакта. Полное сопротивление варикапа определяется выражением
Добротность варикапа в области низких частот в соответствии с (3.4) можно определить по формуле
из которой следует, что она растет с ростом частоты. На высоких частотах при выполнении условия й)Сб/?щЗ>1 сопротивлением 7?„ можно пренебречь и тогда добротность варикапа зависит от частоты по формуле
т. е. она уменьшается с ростом частоты. Отсюда следует, что добротность варикапа имеет максимум, который соответствует частоте
при этом максимальную добротность можно найти по формуле
На рис. 3.3 б приведены зависимости добротности б от частоты для варика-пов, изготовленных из кремния и арсенида галлия. Из графиков видно, что для варикапов из арсенида галлия оптимальная частота составляет ~ 1 кГц, в то время как для кремниевых варикапов она почти достигает 1 МГц. Варикапы находят применение в различных электронных схемах: модуляторах, перестраиваемых резонансных контурах, генераторах с электронной настройкой, параметрических усилителях и генераторах и др. На рис. 3.4 показана схема резонансного контура с л. - - электронной перестройкой при помощи постоянного напряжения {/„. Напряжение перестройки подается в среднюю точку двух встречно последовательно включенных варикапов УВ\ и УВ1 через дополнительный резистор /?д. Такое включение варикапов позволяет увеличить крутизну перестройки и устраняет необходимость применения разделительного конденсатора. Специально для таких схем промышленностью выпускаются сдвоенные варикапы типов КВС111 или КВС120. Стабилитроны — это полупроводниковые диоды, работающие в режиме лавинного пробоя. При обратном смещении полупроводникового диода возникает электрический лавинный пробой р-п-пврехода. При этом в широком диапазоне изменения тока через диод напряжение на нем меняется очень незначительно. Для ограничения тока через стабилитрон последовательно с ним включают сопротивление. Если в режиме пробоя мощность, расходуемая в нем, не превышает предельно допустимую, то в таком режиме стабилитрон может работать неограниченно долго. На рис. 3.5 а показано схематическое изображение стабилитронов, а на рис. 3.5 б приведены их вольт-амперные характеристики. Напряжение стабилизации стабилитронов зависит от температуры. На рис. 3.5 о штриховой линией показано перемещение вольт-амперных характеристик при увеличении температуры. Очевидно, что повышение температуры увеличивает напряжение лавинного пробоя при 17^>5В и уменьшает его при 17^<5В. Иначе говоря, стабилитроны с напряжением стабилизации больше 5 В имеют положительный температурный коэффициент напряжения (ТКН), а при и^т'^5 В — отрицательный. При [/ст=6...5В ТКН близок к нулю.
Рис 3 б Схема включения стабилитрона (а) и стабистора (б) Иногда для стабилизации напряжения используют прямое падение напряжение на диоде. Такие приборы в отличие от стабилитронов называют стабисто-рами. В области прямого смещения ^-«-перехода напряжение на нем имеет значение 0,7..2В и мало зависит от тока. В связи с этим стабисторы позволяют стабилизировать только малые напряжения (не более 2В). Для ограничения тока через стабистор последовательно с ним также включают сопротивление. В отличие от стабилитронов при увеличении температуры напряжение на стабисторе уменьшается, так как прямое напряжение на диоде имеет отрицательный ТКН Схема включения стабилитрона приведена на рис. 3.6 я, а стабистора — на рис. 366 Приведенный выше характер температурной зависимости напряжения стабилитронов обусловлен различным видом пробоя в них. В широких переходах при напряженности поля в них до 5-Ю4 В/см имеет место лавинный пробой. Такой пробой при напряжении на переходе > 6 В имеет положительный температурный коэффициент В узких переходах при большой напряженности электрического поля (более 1,4-10^) наблюдается пробой, который называется зенеровским. Такой пробой имеет место при низком напряжении на переходе (менее 5В) и характеризуется отрицательным температурным коэффициентом При напряжении на переходе от 5 до 6 В одновременно существуют оба вида пробоя, поэтому температурный коэффициент близок к нулю. График зависимости температурного коэффициента ТКНсл от напряжения стабилизации Ц-г приведен на рис. 3.7 Основными параметрами стабилитронов являются: • напряжение стабилизации {/с,, • температурный коэффициент напряжения стабилизации ТКНсг, • допустимый ток через стабилитрон *СТ Д011»
Рис. 3.8. Линеаризованная характеристика стабилитрона (а) и его схема замещения (б) Кроме того, для импульсных стабилитронов нормируется время включения стабилитрона /„„л. а Для двухсторонних стабилитронов нормируется несимметричность напряжений стабилизации Аи^=и^-и^- Дифференциалы'юе сопротивление стабилитрона — это параметр, который характеризует наклон вольт-амперной характеристики в области пробоя. На рис. 3.8 а приведена линеаризованная характеристика стабилитрона, с помощью которой можно определить его дифференциальное сопротивление и построить схему замещения, приведенную на рис. 3.8 б. Используя приведенную на рис. 3.8 б схему замещения, можно рассчитать простейший стабилизатор напряжения, изображенный на рис. 3.9 а. Заменяя стабилитрон его схемой замещения, получим расчетную схему, изображенную на рис. 3.9 б. Лля этой схемы можно написать систему уравнений
В результате решения системы уравнений (3.9) получим напряжение на выходе стабилизатора
где 1н=и^/К» — ток нагрузки. Подставив значение /„> получим окончательно
Из выражения (3.11) следует, что выходное напряжение стабилизатора зависит от напряжения на входе стабилизатора С/,х, сопротивлений нагрузки Ки и ог раничения тока /?,, а также параметров стабилитрона и^ и;•„. Условное обозначение стабилитрона включает: материал полупроводнике (К — кремний); обозначение подкласса стабилитронов (букву С); цифру, указы. вающую на мощность стабилитрона; две цифры, соответствующие напряжении: стабилизации, и букву, указывающую особенность конструкции или корпуса Например, стабилитрон КС168А соответствует маломощному стабилитрону (то1 менее 0,3 А) с напряжением стабилизации 6,8 В, в металлическом корпусе. Кроме стабилизации напряжения стабилитроны также используются для ог. раничения импульсов напряжения и в схемах защиты различных элементов 01 повышения напряжения на них. Туннельные диоды. Туннельный эффект заключается в туннельном прохождении тока через р-и-переход. При этом ток начинает проходить через переход прк напряжении, значительно меньшем контактной разности потенциалов. Достигается туннельный эффект созданием очень тонкого обедненного слоя, который в туннельном диоде достигает 0,01 мкм. При таком тонком обедненном слое в нем даже при напряжении 0,6... 0,7 В напряженность поля достигает (5...'1)-\0'^Ысм.. При этом через такой узкий ^-и-переход протекает значительный ток Этот ток проходит в обоих направлениях, только в области прямого смещения ток вначале растет, а достигнув значения /пщ при напряжении и\, затем довольно резко убывает до /тш при напряжении и-г. Снижение тока связано с тем, что с ростом напряжения в прямом направлении уменьшается число электронов, способных совершить туннельный переход. При напряжении {/д число таких электронов становится равным нулю и туннельный ток исчезает. При дальнейшем повышении напряжения выше </г прохождение прямого тока такое же, как у обычного диода, и определяется диффузией. Ввиду очень малой толщины слоя ^-п-перехода время перехода через него очень мало (до 10 "-10 '''с), поэтому туннельный диод — практически безынерционный прибор. В обычных же диодах электроны проходят через переход благодаря диффузии, т. е. очень медленно. Вольт-амперная характеристика туннельного диода приведена на рис. 3.10 а, а его схематическое изображение — на рис. 3.10 б. На вольт-амперной характеристике туннельного диода можно выделить три основных участка: начальный участок роста тока от точки 0 до /щах. участок спада тока от /щах до./тш и участок дальнейшего роста тока от /дат. Очевидно, что спадающий участок, на котором положительному приращению напряжения Д(/>0 соответствует отрицательное приращение тока Д/, имеет отрицательное сопротивление (или отрицательную проводимость -С) Схема замещения туннельного диода в выбранной рабочей точке на участке отрицательного сопротивления для малого сигнала имеет вид, приведенный на рис. 3.10 в. На этой схеме С — общая емкость диода в точке минимума вольт- Чй Рис 3 10 Вольт-амперная характеристика туннельного диода (а), его схематическое изображение (б), и схема замещения (в) амперной характеристики, -0 — отрицательная проводимость на падающем участке, /•„ — последовательное сопротивление потерь, Ь — индуктивность выводов. Схема генератора на туннельном диоде приведена на рис. 3 11 а. В этой схеме туннельный триод ТД включается последовательно с нагрузкой и источником постоянного напряжения Е. Для возникновения колебаний в этой схеме необходимо выполнить два условия. Первое условие состоит в том, чтобы напряжение источника Е обеспечивало нахождение рабочей точки ТД на участке отрицательного сопротивления (падающем участке). Второе условие заключается в том, чтобы отрицательное сопротивление ТД было больше положительного сопротивления нагрузки Ки (т е. 1/6'>7?н). На рис 3.11 б показано, как нужно выбирать напряжение источника питания Е при заданном сопротивлении нагрузки 7?н. На осях вольт-амперной характеристики ТД откладываются две точки. На оси напряжения откладывается напряжение источника питания Е, что соотвествует напряжению на диоде при закороченной нагрузке /?„, а на оси тока откладывается ток Е/Кя, что соответствует закорочен-ному ТД Эти две точки соединяются прямой линией, которая называется нагрузочной Пересечение линии нагрузки 7?н с вольт-амперной характеристикой ТД соответствует их одинаковому току (что необходимо при последовательном их соединении) и определяет положение рабочей точки. Как видно из рис. 3.11 б, рабочая точка на падающем участке может быть обеспечена двумя способами проведения нагрузочной линии. Нагрузочная линия 1, проведенная через точки Е\ и Е^/К^, пересекает вольт-амперную характеристику ТД в трех точках А, В и С. Очевидно, что при подключении питания к схеме первой будет рабочая точка А, в которой сопротивление ТД положительное и, следовательно, генерации не будет. Рис 3 11 Схема генератора на туннельном диоде (а), и определение условий возникновения колебании (б) Нагрузочная линия 2, проведенная между точками Е^ и E^/R^, пересекает вольт-амперную характеристику ТД только в одной точке В Такой выбор напряжения питания еч и нагрузки R^ обеспечивает возможность возникновения колебаний в схеме Для определения допустимого сопротивления нагрузки найдем отрицательное сопротивление ТД Для этого определим полное сопротивление ТД, пользуясь его схемой замещения (рис 3 10 в)
Полное активное сопротивление в схеме рис. 3 11 а будет иметь значение
Если это сопротивление удовлетворяет условию Ra<0, то колебания в схеме возможны Критическая частота возникновения колебаний определяется при условии, что R»=0, и имеет значение
т. е полностью определяется только параметрами ТД Для определения частоты собственных колебаний необходимо приравнять к нулю мнимую часть полного сопротивления (3 13)
v Решая уравнение (3.15) относительно резонансной частоты, найдем частоту колебаний в схеме рис. 3.11 а Для существования колебаний в генераторе по схеме рис. 3.11 а необходимо выполнение условия
Для того чтобы колебания не содержали гармоники, необходимо, чтобы их амплитуда не превышала 0,lt/o. Поэтому в генераторах на ТД амплитуда колебаний обычно составляет примерно 10.20 мВ. Максимальная амплитуда колебаний равна и^-и^ЮОмВ. Рабочая частота генератора на ТД обычно превышает 1ГГц. Обращенный диод является вырожденным туннельным диодом. Подбором концентрации примесей таким образом, чтобы границы зон не перекрывались, а совпадали при отсутствии внешнего смещения на переходе, можно получить обычную диодную характеристику в области положительных напряжений При этом участок отрицательного сопротивления будет отсутствовать. Вольт-амперная характеристика обращенного диода приведена на рис. 3 12 а, а его условное, обозначение — на рис. 3.12 б. Обращенные диоды применяются для выпрямления на сверхвысоких частотах очень малых напряжений. Однако при использовании обращенного диода необходимо поменять местами анод и катод, так как меняются местами области выпрямления Это и обусловило название диода — обращенный. Фотодиод (ФД) представляет собой диод с открытым ^-и-переходом Световой поток, падающий на открытый р-п-перехор. приводит к появлению в одной из областей дополнительных неосновных носителей зарядов, в результате чего увеличивается обратный ток. В общем случае ток фотодиода определяется формулой
где /ф==5',Ф — фототек, S,— интегральная чувствительность, Ф — световой поток Вольт-амперные характеристики ФД приведены на рис. 3 1 а, а его схематичное изображение — на рис. 3136. Ьез включения нагрузки фотодиод может работать в двух режимах 1) короткого замыкания и 2) холостого хода. В режиме короткого замыкания напряжение на диоде равно нулю, и ток в диоде равен фототоку, т е /=-/ф=-5,Ф Таким образом, в режиме короткого замыкания соблюдается прямая пропорциональность между током в диоде и световым потоком. Такая пропорциональность достаточно хорошо соблюдается в пределах 6-7 порядков
Рис. 3.13 Вольт-амперная характеристика фотодиода (а), его схема жчсское изображение (б) хода t/xx, отмеченное на рис. 3.13 я, лежит на горизонтальной оси. Для определения этого напряжения можно прологарифмировать выражение (3.18), откуда находим
Таким образом, при /=0 область Р заряжается положительно, а область N— отрицательно и между электродами фотодиода при освещении появляется разность потенциалов, называемая фото-эдс. Фото-эдс равна напряжению £/„x и не может превышать контактной разности потенциалов уд-. Для кремниевых фотодиодов напряжения £/„<0,7B. Для режима холостого хода характерна логарифмическая зависимость выходного напряжения от освещенности, причем выходное напряжение не превышает некоторого определенного значения при любой освещенности. Реализовать режим короткого замыкания фотодиода можно только с помощью операционного усилителя (см. Лекцию 8), а практическая реализация режима холостого хода вообще затруднительна. В этом случае можно говорить о работе фотодиода на некоторую нагрузку. Схема включения фотодиода на нагрузку приведена на рис. 3.14 а, а нагрузочная характеристика — на рис. 3.146. Для построения нагрузочной прямой можно воспользоваться методикой, приведенной при анализе режима туннельного диода (рис. 3.11 б). Для этого на горизонтальной оси нужно отложить напряжение источника Е, а на вертикальной оси — ток короткого замыкания E/R^. Прямая, соединяющая эти точки, и является нагрузочной прямой. Пересечение нагрузочной прямой с вольт-амперными характеристиками фотодиода позволяет определить напряжение на нагрузке R». Для этого нужно из точек пересечения восстановить перепендикуляры до пересечения с горизонтальной осью. Эти точки пересечения и дают значение напряжения на нагрузке. Из приведенного на рис. 3.146 построения следует, что при отсутствии освещения напряжение на фотодиоде будет максимальным С^гемн- При увеличении освещения ток в фотодиоде возрастает, а напряжение на нем падает. Напряжение на Рис. 3.14. Схема включения фотодиода с нагрузкой (а), построение нагрузочной характеристики (б) и график напряжения на нагрузке (в) нагрузке определяется как разность напряжения источника питания и напряжения на фотодиоде
График зависимости ^=/(0) приведен на рис. 3.14в. Фотодиоды находят применение как приемники оптического излучения. Основными характеристиками фотодиодов являются: диапазон длин волн принимаемого излучения, интегральная чувствительность S„ темновой ток /, постоянная времени т. Большинство фотодиодов работает в широком диапазоне длин волн как видимого, так и невидимого излучения 4Л.=0,4...2мкм. Интегральная чувствительность зависит от площади р-п-перехода. и может изменяться в пределах 103... 1 мкА/пюкс. Темновой ток обычно невелик и имеет значение 10 2.. 1 мкА. Обозначение фотодиодов состоит из букв ФД и порядкового номера разработки. Например, фотодиод ФД24К имеет интегральную чувствительность 0,5мкА/лк и темновой ток 1 мкА. В связи со сравнительно небольшим уровнем выходного сигнала фотодиоды обычно работают с усилителем. Усилитель может быть внешним и интегрированным вместе с фотоприемником. · Светоцзлучающие диоды (СИД) преобразуют электрическую энергию в световое излучение за счет рекомбинации электронов и дырок. В обычных диодах рекомбинация (объединение) электронов и дырок происходит с выделением тепла, т. е. без светового излучения. Такая рекомбинация вызывается фононной. В СИД преобладает рекомбинация с излучением света, которая называется фотонной. Обычно такое излучение бывает резонансным и лежит в узкой полосе частот Для изменения длины волны излучения можно менять материал, из которого изготовлен светодиод, или изменять ток. На рис. 3.15 а показано схематическое изображение светодиода, а на рис. 3.15 б приведены спектральные характеристики излучения. Рис. 315. Условное схематическое изображение светодиода (а) и спектральные характеристики излучения (б) Для изготовления светодиодов наиболее часто используют фосфид галлия или арсенид галлия. Для диодов видимого излучения часто используют фосфид-арсе-нид галлия. Из отдельных светодиодов собирают блоки и матрицы, которые позволяют высвечивать изображения букв и цифр. Инжекциотши лазер — это диод с монохроматическим излучением. Когерентное монохроматическое излучение обеспечивается стимулированной фотонной рекомбинацией, которая возникает при инжекции носителей заряда при определенном токе. Минимальный ток, при котором преобладает стимулированная фотонная рекомбинация, называется пороговым. При увеличении тока выше порогового значения происходит ухудшение монохроматического излучения. \
|