Студопедия — Тесты к лекции №4
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тесты к лекции №4






4.1. Гидравлическое сопротивление это

а) сопротивление жидкости к изменению формы своего русла;
б) сопротивление, препятствующее свободному проходу жидкости;
в) сопротивление трубопровода, которое сопровождается потерями энергии жидкости;
г) сопротивление, при котором падает скорость движения жидкости по трубопроводу.

4.2. Что является источником потерь энергии движущейся жидкости?

а) плотность; б) вязкость; в) расход жидкости; г) изменение направления движения.

4.3. На какие виды делятся гидравлические сопротивления?

а) линейные и квадратичные; б) местные и нелинейные;
в) нелинейные и линейные; г) местные и линейные.

4.4. Влияет ли режим движения жидкости на гидравлическое сопротивление

а) влияет; б) не влияет; в) влияет только при определенных условиях;
г) при наличии местных гидравлических сопротивлений.

4.5. Ламинарный режим движения жидкости это

а) режим, при котором частицы жидкости перемещаются бессистемно только у стенок трубопровода;
б) режим, при котором частицы жидкости в трубопроводе перемещаются бессистемно;
в) режим, при котором жидкость сохраняет определенный строй своих частиц;
г) режим, при котором частицы жидкости двигаются послойно только у стенок трубопровода.

4.6. Турбулентный режим движения жидкости это

а) режим, при котором частицы жидкости сохраняют определенный строй (движутся послойно);
б) режим, при котором частицы жидкости перемещаются в трубопроводе бессистемно;
в) режим, при котором частицы жидкости двигаются как послойно так и бессистемно;
г) режим, при котором частицы жидкости двигаются послойно только в центре трубопровода.

4.7. При каком режиме движения жидкости в трубопроводе пульсация скоростей и давлений не происходит?

а) при отсутствии движения жидкости; б) при спокойном;
в) при турбулентном; г) при ламинарном.

4.8. При каком режиме движения жидкости в трубопроводе наблюдается пульсация скоростей и давлений в трубопроводе?

а) при ламинарном; б) при скоростном;
в) при турбулентном; г) при отсутствии движения жидкости.

4.9. При ламинарном движении жидкости в трубопроводе наблюдаются следующие явления

а) пульсация скоростей и давлений;
б) отсутствие пульсации скоростей и давлений;
в) пульсация скоростей и отсутствие пульсации давлений;
г) пульсация давлений и отсутствие пульсации скоростей.

4.10. При турбулентном движении жидкости в трубопроводе наблюдаются следующие явления

а) пульсация скоростей и давлений;
б) отсутствие пульсации скоростей и давлений;
в) пульсация скоростей и отсутствие пульсации давлений;
г) пульсация давлений и отсутствие пульсации скоростей.

4.11. Где скорость движения жидкости максимальна при турбулентном режиме?

а) у стенок трубопровода;
б) в центре трубопровода;
в) может быть максимальна в любом месте;
г) все частицы движутся с одинаковой скоростью.

4.12. Где скорость движения жидкости максимальна при ламинарном режиме?

а) у стенок трубопровода;
б) в центре трубопровода;
в) может быть максимальна в любом месте;
г) в начале трубопровода.

4.13. Режим движения жидкости в трубопроводе это процесс

а) обратимый;
б) необратимый;
в) обратим при постоянном давлении;
г) необратим при изменяющейся скорости.

4.14. Критическая скорость, при которой наблюдается переход от ламинарного режима к турбулентному определяется по формуле

4.15. Число Рейнольдса определяется по формуле

4.16. От каких параметров зависит значение числа Рейнольдса?

а) от диаметра трубопровода, кинематической вязкости жидкости и скорости движения жидкости;
б) от расхода жидкости, от температуры жидкости, от длины трубопровода;
в) от динамической вязкости, от плотности и от скорости движения жидкости;
г) от скорости движения жидкости, от шероховатости стенок трубопровода, от вязкости жидкости.

4.17. Критическое значение числа Рейнольдса равно

а) 2300; б) 3200; в) 4000; г) 4600.

4.18. При Re > 4000 режим движения жидкости

а) ламинарный; б) переходный; в) турбулентный; г) кавитационный.

4.19. При Re < 2300 режим движения жидкости

а) кавитационный; б) турбулентный; в) переходный; г) ламинарный.

4.20. При 2300 < Re < 4000 режим движения жидкости

а) ламинарный; б) турбулентный; в) переходный; г) кавитационный.

4.21. Кавитация это

а) воздействие давления жидкости на стенки трубопровода;
б) движение жидкости в открытых руслах, связанное с интенсивным перемшиванием;
в) местное изменение гидравлического сопротивления;
г) изменение агрегатного состояния жидкости при движении в закрытых руслах, связанное с местным падением давления.

4.22. Какой буквой греческого алфавита обозначается коэффициент гидравлического трения?

а) γ; в) λ; г) μ.

4.23. По какой формуле определяется коэффициент гидравлического трения для ламинарного режима?

4.24. На сколько областей делится турбулентный режим движения при определении коэффициента гидравлического трения?

а) на две; б) на три; в) на четыре г) на пять.

4.25. От чего зависит коэффициент гидравлического трения в первой области турбулентного режима?

а) только от числа Re;
б) от числа Re и шероховатости стенок трубопровода;
в) только от шероховатости стенок трубопровода;
г) от числа Re, от длины и шероховатости стенок трубопровода.

4.26. От чего зависит коэффициент гидравлического трения во второй области турбулентного режима?

а) только от числа Re;
б) от числа Re и шероховатости стенок трубопровода;
в) только от шероховатости стенок трубопровода;
г) от числа Re, от длины и шероховатости стенок трубопровода.

4.27. От чего зависит коэффициент гидравлического трения в третьей области турбулентного режима? а) только от числа Re;
б) от числа Re и шероховатости стенок трубопровода;
в) только от шероховатости стенок трубопровода;
г) от числа Re, от длины и шероховатости стенок трубопровода.

4.28. Какие трубы имеют наименьшую абсолютную шероховатость?

а) чугунные; б) стеклянные; в) стальные; г) медные.

4.29. Укажите в порядке возрастания абсолютной шероховатости материалы труб.

а) медь, сталь, чугун, стекло; б) стекло, медь, сталь, чугун;
в) стекло, сталь, медь, чугун; г) сталь, стекло, чугун, медь.

4.30. На каком рисунке изображен конфузор

4.31. На каком рисунке изображен диффузор

4.32. Что такое сопло?

а) диффузор с плавно сопряженными цилиндрическими и коническими частями;
б) постепенное сужение трубы, у которого входной диаметр в два раза больше выходного;
в) конфузор с плавно сопряженными цилиндрическими и коническими частями;
г) конфузор с плавно сопряженными цилиндрическими и параболическими частями.

4.33. Что является основной причиной потери напора в местных гидравлических сопротивлениях

а) наличие вихреобразований в местах изменения конфигурации потока;
б) трение жидкости о внутренние острые кромки трубопровода;
в) изменение направления и скорости движения жидкости;
г) шероховатость стенок трубопровода и вязкость жидкости.

4.34. Для чего служит номограмма Колбрука-Уайта?

а) для определения режима движения жидкости;
б) для определения коэффициента потерь в местных сопротивлениях;
в) для определения потери напора при известном числе Рейнольдса;
г) для определения коэффициента гидравлического трения.

4.35. С помощью чего определяется режим движения жидкости?

а) по графику Никурадзе; б) по номограмме Колбрука-Уайта;
в) по числу Рейнольдса; г) по формуле Вейсбаха-Дарси.

4.36. Для определения потерь напора служит

а) число Рейнольдса; б) формула Вейсбаха-Дарси;
в) номограмма Колбрука-Уайта; г) график Никурадзе.

4.37. Для чего служит формула Вейсбаха-Дарси?

а) для определения числа Рейнольдса;
б) для определения коэффициента гидравлического трения;
в) для определения потерь напора;
г) для определения коэффициента потерь местного сопротивления.

4.38. Укажите правильную запись формулы Вейсбаха-Дарси

4.39. Теорема Борда гласит

а) потеря напора при внезапном сужении русла равна скоростному напору, определенному по сумме скоростей между первым и вторым сечением;
б) потеря напора при внезапном расширении русла равна скоростному напору, определенному по сумме скоростей между первым и вторым сечением;
в) потеря напора при внезапном сужении русла равна скоростному напору, определенному по разности скоростей между первым и вторым сечением;
г) потеря напора при внезапном расширении русла равна скоростному напору, определенному по разности скоростей между первым и вторым сечением.

4.40. Кавитация не служит причиной увеличения

а) вибрации;
б) нагрева труб;
в) КПД гидромашин;
г) сопротивления трубопровода.

 

 

Лекция 5. ИСТЕЧЕНИЕ ЖИДКОСТИ ИЗ ОТВЕРСТИЙ, НАСАДКОВ И ИЗ-ПОД ЗАТВОРОВ

 

 

Рассмотрим различные случаи истечения жидкости из резервуаров, баков, котлов через отверстия и насадки (коротки трубки различной формы) в атмосферу или пространство, заполненное газом или той же жидкость. В процессе такого истечения запас потенциальной энергии, которым обладает жидкость, находящаяся в резервуаре, превращается в кинетическую энергию свободной струи.

Основным вопросом, который интересует в данном случае, является определение скорости истечения и расхода жидкости для различных форм отверстий и насадков.







Дата добавления: 2015-10-19; просмотров: 1111. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия