УСТРОЙСТВО ЭЛЕКТРИЧЕСКИХ МАШИН
Основные элементы конструкции. Вращающиеся электрические машины независимо от их исполнения имеют некоторые однотипные элементы конструкции. Каждая вращающаяся машина имеет две основные части: вращающийся ротор 1 и неподвижный статор 2 (рис. 1.1). В большинстве случаев ротор располагается внутри статора. Между ними всегда имеется воздушный зазор 3. Ротор крепится на валу 4, Рис. 1.1. Конструктивная схема электрической машины: 1 — ротор; 2 — статор; 3 — воздушный зазор; 4 — вал; 5 — подшипники; 6 — подшипниковые щиты; 7 — корпус Рис. 1.2. Асинхронный двигатель в защищенном исполнении: 1 — лапы для крепления машины; 2 — вентиляционное окно для входа охлаждающего воздуха; 3 — подшипник; 4 — вал; 5 — подшипниковые щиты; 6 — корпус; 7— вентиляционное окно для выхода воздуха который опирается на подшипники 5. Один конец вала удлинен для сопряжения с другими рабочими механизмами. Подшипники обычно располагаются в подшипниковых щитах 6, прикрепленных болтами к корпусу (станине) 7. Статор также крепится к корпусу. На рис. 1.2 и 1.3. дан общий вид асинхронных двигателей, а на рис. 1.4 представлен двигатель в разобранном виде. Часть машины, где размещается рабочая обмотка, в которой индуктируется э. д. с, называется якорем. Якорем может быть ротор или статор. Системы охлаждения. Электрические машины выполняются с естественным и искусственным охлаждением. В ка- честве охлаждающей среды используется воздух, в некоторых случаях масло, водород или вода. Естественное охлаждение происходит за счет теплопроводности, конвекции и лучеиспускания. Движение охлаждающей среды может создаваться в результате вращения частей машины, в которой не Рис. 1.3. Асинхронный двигатель в закрытом исполнении: 1 — лапы для крепления машины; 2 — подшипниковый щит; 3 — подшипник; 4 — вал; 5 — корпус; 5 —кожух. Стрелки А и В показывают направление движения воздуха Рис. 1.4. Асинхронный двигатель защищенного исполнения в разобранном виде: 1 — ротор; 2 — статрр; 3 — лапы для крепления; 4 — вал; 5 — подшипники; 6 — подшипниковые щиты; 7 — корпус; 8 — вентиляционные лопатки имеется специальных вентиляционных приспособлений. Микромашины обычно имеют естественное охлаждение. Вращающиеся электрические машины мощностью более 0,6 квт обычно выполняются с искусственным охлаждением, которое осуществляется при помощи специальных вентиляционных устройств. Применение вентиляции позволяет существенно повысить мощность и является экономически целесообразным. Машины с искусственным охлаждением имеют меньшие габариты, вес и расход активных материалов. Электрические машины малых и средних мощностей обычно выполняются с самовентиляцией. В этом случае напор охлаждающегося воздуха создается вентилятором, который укрепляется на валу, или вентиляционными лопатками и приспособлениями (см. 8 на рис. 1.4), укрепленными на торцовой поверхности ротора. В машинах охлаждающий воздух может прогоняться в направлении оси вала (рис. 1.5, а). Такая система вентиляции называется осевой. Осевая вентиляция может быть вытяжной или нагнетательной. В первом случае вентилятор помещается на «выходе», во втором — на «входе» воздуха. Охлаждающий воздух может прогоняться и в радиальном направлении (рис. 1.5, б), проходя по радиальным каналам между пакетами стали и обдувая лобовые части обмоток, Такая система вентиляции называется радиальной. Во многих случаях применяется комбинированная радиально-осевая система вентиляции. Виды исполнения. У электрических микромашин объем активных частей, в которых выделяется тепло, небольшой по отношению к поверхности охлаждения. Поэтому потери, приходящиеся на еди- Рис. 1.5. Система вентиляции: а — осевая; б — радиальная ницу поверхности охлаждения, небольшие, и микромашины сравнительно хорошо охлаждаются естественным путем. К тому же в микромашинах не остается места для размещения вентилятора, поэтому они (микромашины) обычно выполняются закрытыми и имеют внешнее естественное охлаждение. Основным исполнением электрических машин мощностью свыше 0,6 квт является защищенное и закрытое обдуваемое. Машины в защищенном исполнении предохранены от случайного прикосновения к вращающимся и токоведу-щим частям, а также от попадания внутрь посторонних предметов. Машина, имеющая приспособления, защищающие от попадания в нее капель, падающих под углом к вертикали, называется брызгозащищенной. Доступ к вращающимся и токоведущим частям защищенной машины затруднен (рис. 1.2 и 1.6), так как вентиляционные окна, предназначенные для входа и выхода охлаждающего воздуха, расположены снизу таким образом, что брызги не могут попадать внутрь машины. В машинах закрытого исполнения отсутствует интенсивное сообщение между ее внутренним пространством и окружающей средой. Для лучшего охлаждения нагретых частей внутри машины создается циркуляция воздуха, которая в некоторых случаях осуществляется внутренним вентилятором. Для лучшего охлаждения корпус Рис. 1.6; Защищенный асинхронный двигатель с вертикальным расположением вала и фланцевым исполнением: 1 — окно, предназначенное для входа охлаждающего воздуха; 2 — окно, предназначенное для выхода охлаждающего воздуха; 3 — фланец такой машины часто выполняется ребристым и обдувается внешним вентилятором, который прогоняет воздух, засасываемый из внешней среды, между корпусом и направляющим кожухом (рис. 1.3). В торцовой части кожуха имеются отверстия. Направление, в котором воздух засасывается в отверстие, показано стрелкой А. Стрелка В показывает направление движения воздуха, охлаждающего корпус (см. рис. 1.3). Закрытые машины могут быть герметическими, имеющими газонепроницаемое, водонепроницаемое и взрывобезопасное исполнения. Мощность закрытых невентилируемых двигателей средних и больших мощностей при одинаковом нагреве обмоток должна быть уменьшена почти в два раза по сравнению с обдуваемыми машинами. Электрические машины обычно выполняются для работы при горизонтальном или вертикальном положении вала. Крепление машины, как правило, осуществляется при помощи лап, расположенных на ее корпусе (см. рис. 1.2, 1.3 и 1.4). Некоторые машины вместо лап имеют для крепления на подшипниковом щите фланец (см. рис. 1.6). Шумы электрических машин. Работа электрических машин сопровождается шумом, источником которого являются периодические колебания и упругие деформации отдельных частей машины. Шум может быть вызван механическими причинами, связанными с неточностью балансировки ротора, периодическим колебанием щеток вследствие неровной поверхности коллектора, трением щеток о коллектор и трением в подшипниках (особенно в шарикоподшипниках). При работе машины может появиться так называемый магнитный шум, вызванный периодическими деформациями участков маг-нитопровода, которые могут возникнуть в результате изменения магнитной проводимости воздушного зазора при вращении зубчатого якоря, а при работе на переменном токе также вследствие периодического перемагничивания магнитной системы. Источниками шума могут явиться и вихреобразования потока воздуха, охлаждающего машину. Условно можно считать машины бесшумными, если акустический уровень шума Г < 35 дб, и малошумными, если 35< Г <55 дб. У нормальных электрических микромашин обычно 60< Г <80 дб. В этих неравенствах Г, как обычно, измеряется в децибелах.
|