Студопедия — Радиально-поршневые гидромашины.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Радиально-поршневые гидромашины.






Сравнительная оценка основных параметров различных типов гидромашин показывает, что каждый из них имеет определенные преимущества и недостатки.

В последние годы для привода исполнительных механизмов вращательного движения все более широкое применение получают радиально-поршневые машины.

Радиально-поршневые машины, как и рассмотренные выше, обратимого действия. При этом гидромоторы по своему устройству бывают высокомоментные (низкооборотные) и низкомомент-ные (высокооборотные). Устройство, передающее вращательное движение с помощью высокомоментного (низкооборотного) гидромотора (ВМГ), по сравнению с устройством, передающим вращательное движение с помощью низкомоментного (высокооборотного) гидромотора и механического редуктора, характеризуется большей компактностью и меньшей массой, более высокими пусковым моментом (до 90%) и КПД, большим на 4... 6%.

Радиально-поршневым насосом называется роторный поршневой насос, у которого рабочие камеры образованы рабочими поверхностями поршней и цилиндров, а оси поршней расположены перпендикулярно к оси блока цилиндров (ротора) или составляют с ней углы 45°. В этих насосах жидкость вытесняется из рабочих камер (цилиндров) в процессе вращательно-поступательного движения вытеснителей.

Статор 1 радиально-поршпевого насоса (рис. 4.10) расположен эксцентрично относительно ротора 2. В цилиндрах, радиально расположенных в роторе (обычно 5... 9 шт.), находятся поршни 3, которые своей сферической головкой опираются на опорную (внутреннюю) поверхность статора. Оси цилиндров расположены в одной плоскости и пересекаются в одной точке (т. е. звездообразно). Распределение жидкости осуществляется неподвижным цапфенным распределителем 4, в котором А— всасывающая, а Б — нагнетательная полости.

Принцип работы насоса следующий. При вращении ротора, например, по ходу часовой стрелки поршни совершают сложное движение — они вращаются вместе с ротором и движутся возвратно-поступательно в своих цилиндрах, при этом постоянно контактируют с опорной поверхностью статора. Такой контакт обеспечивается за счет центробежных сил, усилиями пружин 5 и давлением жидкости (при наличии подпитки). В рабочих камерах, расположенных выше горизонтальной осевой линии статора, поршни перемещаются в направлении от цапфы 4. При этом цилиндры соединены со всасывающей полостью А. Так как объемы рабочих камер увеличиваются, то рабочая жидкость заполняет их — происходит процесс всасывания. Рабочие камеры, расположенные ниже осевой горизонтальной линии статора, соединены с полостью нагнетания Б. Поршни в этих камерах перемещаются в направлении к цапфенному распределителю и вытесняют рабочую жидкость на выход из насоса — происходит процесс нагнетания.

Аксиально-поршневые гидромашины.

Аксиально-поршневой гидромашиной называется роторная машина, у которой рабочие камеры образованы поверхностями цилиндров и поршней, а оси поршней параллельны (аксиальны) оси блока цилиндров (ротора) или составляют с ней угол не >45°.

Аксиально-поршневые гидромашины при передаче равной мощности отличаются от других поршневых гидромашин наибольшей компактностью и, следовательно, наименьшей массой. Имея рабочие органы с малыми габаритными размерами и поэтому с малым моментом инерции, они способны быстро изменять частоту вращения. Эти специальные свойства обусловили их широкое применение в качестве регулируемых и нерегулируемых насосов и гидромоторов для гидропередач, обслуживающих дорожные, строительные, транспортные машины и другие системы, а также в следящих гидроприводах большой точности.

Согласно схеме передачи движения к вытеснителям различают линейные (с наклонным диском) и угловые (с наклонным блоком) аксиально-поршневые гидромашины. Обе разновидности гидрома-шнн выпускают с постоянным (нерегулируемым) и переменным (регулируемым) рабочим объемом.

Насосы с наклонным диском имеют наиболее простые конструктивные схемы. В них поршни 3 связаны с наклонным диском 4 точечным касанием (рис. 4.12, а) или шарнирами (рис. 4.12, б). Блок цилиндров 2 с поршнями 3 приводится во вращение валом 5. Для подвода и отвода рабочей жидкости к рабочим камерам в торцовом распределительном диске 1 имеются два дугообразных

окна В и Н. Для обеспечения движения поршней во время процесса всасывания применяется принудительное перемещение поршней посредством шатунов 7 при шарнирном соединении поршней с наклонным диском, а для поршней с точечным касанием — за счет цилиндрических пружин 6 или давления подпитки в полости низкого давления.

Принцип действия насоса заключается в следующем. При вращении вала насоса крутящий момент передается блоку цилиндров. При этом из-за наклона диска поршни совершают сложное движение: вращаются вместе с блоком цилиндров и одновременно с этим совершают возвратно-поступательное движение в цилиндрах блока, при котором происходят процессы всасывания и нагнетания. При вращении блока цилиндров рабочие камеры, находящиеся слева от вертикальной оси распределительного диска 1, соединяются со всасывающим окном В. Поршни в этих камерах движутся от распределительного диска. Объем камер при этом увеличивается, и жидкость под действием перепада давлений поступает в рабочую камеру. Так происходит процесс всасывания.

Рабочие камеры, находящиеся справа от вертикальной оси распределительного диска, соединяются с нагнетательным окном И. При этом поршни движутся в направлении к распределительному диску и вытесняют жидкость нз рабочих камер через распределительный диск в напорную линию.

В насосе с наклонным блоком (рис. 4.13) поршни 3 расположены в блоке цилиндров 2 и шарнирно соединены шатунами 7 с фланцем 4 вала 5. Для отвода и подвода рабочей жидкости к рабочим камерам в торцовом распределительном диске / выполнены дна дугообразных окна В и Н. Карданный механизм 6 передает крутящий момент от вала 5 к блоку цилиндров 2. В остальном насос с наклонным блоком аналогичен насосу с наклонным диском.

Аксиально-поршневые насосы являются обратимыми гидромашинами и могут использоваться в качестве гидромоторов. Реверсирование гидромотора осуществляется изменением направления подводимого потока жидкости. Основными направлениями совершенствования конструкций аксиально-поршневых машин являются улучшение их энергетических показателей и в первую очередь таких, как номинальное давление, частота вращения и угол наклона блока цилиндров. Наибольшее распространение в объемных гидроприводах мобильных машин, работающих в средних и тяжелых режимах нагрузок с большой частотой включения, получили аксиально-поршневые гидромашины серий 200 и 300. Аксиально-поршневые гидромашины серии 200 выпускаются в виде насосов с регулируемой и нерегулируемой подачей и реверсивных нерегулируемых гидромоторов. Структура условного-обозначения аксиально-поршневых машин этой серии приведена на рис. 4.14.

По принципу действия аксиально-поршневые насосы и гидромоторы типа 210 являются обратимыми гидромашинами. Насос типа 210.20 (рис. 4.15) является гидравлической машиной объемного действия с аксиально-расположенными поршня-

ми, совершающими возвратно-поступательное движение в рабочих камерах ротора. Качающий узел состоит из приводного вала 1, семи поршней 11 с шатунами 12, блока цилиндров 6, центрируемого сферическим распределителем 7. За один оборот приводного вила каждый поршень совершает один двойной ход, при этом поршень, выходящий из ротора, засасывает рабочую жидкость в освобожденный объем, а при движении в обратном направлении — вытесняет рабочую жидкость в напорную линию

В регулируемом насосе типа 207 (рис. 4.16) можно изменять наклон блока в процессе работы. Корпус 11 насоса может быть повернут с помощью цапфы 9 относительно неподвижного корпуса 3 на угол от 0 до 25°. Количество подаваемой жидкости при этом изменяется пропорционально углу наклона блока цилиндров 11 и частоте вращения вала 1 насоса. Этим достигается бесступенчатое регулирование потока жидкости независимо от частоты вращения приводного двигателя. Усилие, которое необходимо приложить к цапфе, может быть таким, что непосредственное управление подачей насоса без применения усиливающих устройств становится невозможным. Поэтому при высоком рабочем давлении жидкости насосы используют с усилителями механического и гидравлического типов. Механические усилители могут быть как с ручным, так и с электрическим управлением. Гидравлические усилители оборудуются непосредственным или дистанционным управлением. На ряде машин применяют также устройства, автоматически изменяющие угол наклона блока цилиндров в зависимости отдавления в гидросистеме (регуляторы постоянной мощности или ограничители мощности). На ряде дорожностроительных машин, и в первую очередь на гидравлических экскаваторах, устанавливаются регулируемые аксиально-поршневые насосы, которые состоят из двух унифицированных качающих узлов типа 207, установленных параллельна в одном корпусе. Подобные насосы получили название двухпо точных типа 223 (рис. 4.17).

Поворотные корпуса / и 7 двух качающих секций установлены на подшипниках и могут поворачиваться вокруг вертикальной оси на угол до 25°, чем достигается изменение подачи насоса. При этом оба корпуса жестко связаны между собой траверсой 4 регулятора и могут поворачиваться только синхронно под воздействием регулятора мощности.

Регулятор мощности представляет собой двухступенчатый золотник 2, помещенный непосредственно в корпусе насоса. Площади ступеней золотника регулятора равны. Под каждую ступень подводится давление нагнетания р1 и р2 от качающих секций. Золотник соединен цапфами 9 с блоками цилиндров и воспринимает с одной стороны усилие пружин 3, а с другой — усилие, создаваемое давлениями р1 и р2. При работе с малым давлением пружины удерживают корпуса 1 и 7 на наибольшем угле поворота, обеспечивая максимальную подачу насоса.

Когда давление возрастет, золотник сжимает пружины, снижая подачу насоса. Пружины и упорную шайбу 12 подбирают таким образом, чтобы сохранить постоянной заданную мощность привода. Основные характеристики аксиально-поршневых гидромашин серии 200 приведены в табл. 4.4. Аксиально-поршневые гидромашины серни 300 являются усовершенствованными машинами серии 200 за счет повышения технического ресурса в 1,5—2 раза, номинального давления до 32 МПа и максимального давления до 40 МПа. Эти гидромашины в обоснованных случаях могут заменить гидромашины серии 200. Они имеют более широкую номенклатуру. Основные типораз-меры гидромашин серии 300 и их характеристики приведены в табл. 4.5. В гидромашинах серии 300 использованы общие с гидромашинами серии 200 конструктивные решения с использованием нового принципа изменении рабочего объема с поворотным распределителем.

Качающий узел является общей для всех гидромашин серии 300 унифицированной сборочной единицей. Подшипники качения также унифицированы для всех типоразмеров машин (кроме типоразмера с рабочим объемом 224 см3). Унифицированный ряд аксиально-поршневых нерегулируемых насосов типа 311 и гидромоторов типа 310 основан на использовании общих конструктивных решений, принятых длл гидромапшн серии 200, с учетом указанных выше направлений их совершенствования.

Конструктивное исполнение регулируемых гидромоторов типа 312 основано на использовании основных деталей нерегулируемых гидромоторов типа 310 с наклонным блоком цилиндров и сферическим распределителем. Регулируемые гидромоторы типа 312 имеют также семь поршней с шатунами. Изменение рабочего объема достигается перемещением сферического распределителя при угле наклона цилиндров к оси вала 25... 7°. Из-за резкого снижения КПД не рекомендуется наклонять блок цилиндроп на угол <7°. В корпусе гидромотора установлен гидравлический регулятор рабочего объема непрерывного действия с дифференциальным плунжером. Двухпоточный регулируемый насос типоразмера 323.20 (рис. 4.18) состоит из двух качающих узлов аксиально-поршневого типа с наклонным блоком цилиндров. Регулирование расхода обеспечивается наклоном блока цилиндров 4 относительно оси вала 1. Максимальный угол наклона (25°) соответствует наибольшему рабочему объему качающего узла (112 см3). Подвод и отвод рабочей жидкости осуществляются по торцовым сферической и цилиндрической поверхностям распределителя 5 через окна и каналы в корпусе 6.

Для повышения рабочих параметров (давления и объемной подачи) блок цилиндров выполнен из высокопрочного антифрикционного сплава, усилено крепление шатунов во фланцах вала,расширены всасывающие и нагнетательные окна на поверхностях распределителя.

Для регулирования рабочего объема каждого качающего узла применен регулятор непрямого действия, состоящий из следящего гидроусилителя с датчиком 7 поршневого типа, имеющим две равные активные площади управления, следящего золотника 8, питаемого от напорной гидролинии наибольшего давления, комплекта пружин, обеспечивающих заданный закон регулирования, и исполнительного гидроцилиндра с дифференциальным плунжером 9.

Конструкция двухпоточного насоса типоразмера 323.20 предусматривает возможность установки третьего нерегулируемого качающего узла, который в зависимости от назначения машины может быть использован для питания отдельных исполнительных механизмов и машин (рулевое управление, поворот грейфера,, привод вентилятора и т. д.) или для привода рабочих органов машины. Трехпоточный регулируемый насос имеет шифр 333.20.







Дата добавления: 2015-10-19; просмотров: 1928. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия