Метод Монте-Карло и проверка статистических гипотез
Статистические испытания по методу Монте-Карло представляют собой простейшее имитационное моделирование при полном отсутствии каких-либо правил поведения. Получение выборок по методу Монте-Карло - основной принцип компьютерного моделирования систем, содержащих стохастические или вероятностные элементы. Зарождение метода связано с работой фон Неймана и Улана в конце 1940-х гг.. Этот математический метод был известен и ранее, но свое второе рождение нашел в Лос-Аламосе в закрытых работах по ядерной технике, которые велись под кодовым обозначением «Монте-Карло». Применение метода оказалось настолько успешным, что он получил распространение и в других областях, в частности в экономике. Поэтому многим специалистам термин «метод Монте-Карло» иногда представляется синонимом термина «имитационное моделирование», что в общем случае неверно. Имитационное моделирование - это более широкое понятие, и метод Монте-Карло является важным, но далеко не единственным методическим компонентом имитационного моделирования. Согласно методу Монте-Карло проектировщик может моделировать работу тысячи сложных систем, управляющих тысячами разновидностей подобных процессов, и исследовать поведение всей группы, обрабатывая статистические данные. Другой способ применения этого метода заключается в том, чтобы моделировать поведение системы управления на очень большом промежутке модельного времени (несколько лет), причем астрономическое время выполнения моделирующей программы на компьютере может составить доли секунды. Рассмотрим метод Монте-Карло подробнее. В различных задачах, встречающихся при создании сложных систем, могут использоваться величины, значения которых определяются случайным образом. Примерами таких величин являются: • случайные моменты времени, в которые поступают заказы на фирму; • загрузка производственных участков или служб объекта экономики; • внешние воздействия (требования или изменения законов, платежи по штрафам и др.); • оплата банковских кредитов; • поступление средств от заказчиков; • ошибки измерений. В качестве соответствующих им переменных могут использоваться число, совокупность чисел, вектор или функция. Одной из разновиднобтей метода Монте-Кгфло при численном решении задач, включающих случайные переменные, является метод статистических испытаний, который заключается в моделировании случайных собьггий. Применение метода Монте-Карло может дать существенный эффект при моделировании развития процессов, натурное наблюдение которых нежелательно или невозможно, а другие математические методы применительно к этим процессам либо не разработаны, либо неприемлемы из-за многочисленных оговорок и допущений, которые могут привести к серьезным погрешностям или неправильным выводам. Метод статистических испытаний (Монте-Карло), основанный на использовании датчиков псевдослучайных величин при многочисленных реализациях вариантов поведения сложной экономической системы (или сложного процесса) и аппарата проверки статистических гипотез, полезен для предварительного анализа последствий принимаемых решений. Являясь бесспорно мощным средством при исследовании систем, этот метод вынуждает разрабатывать моделирующую программу. Такое обстоятельство не позволяет применять в чистом виде метод Монте-Карло для решения экономических задач. С учетом отмеченных особенностей данный метод включается в состав многих моделирующих систем, но только для статистических испытаний с возможностью проверки гипотез. Для реализации имитационных моделей экономических процессов необходимы датчики псевдослучайных величин и соответствующие моделирующие функции. В основе вычислений по методу Монте-Карло лежит случайный выбор чисел из заданного вероятностного распределения. При практических вычислениях эти числа берут из таблиц или получают путем некоторых операций, результатами которых являются псевдослучайные числа с теми же свойствами, что и числа, получаемые путем случайной выборки. Имеется большое число вычислительных алгоритмов, которые позволяют получить длинные последовательности псевдослучайных чисел. Однако, прежде чем начать применять метод Монте-Карло, необходимо убедиться, что моделируемая величина действительно является случайно (стохастической), и может быть описана статистически. Существуют различные методы проверки статистических гипотез. Наиболее широко используются на практике критерии: • согласия х2 (хи-квадрат); • Крамера-фон Мизеса; • Колмогорова-Смирнова, Критерий х2 предпочтителен, если объемы выборок N, в отношении которых проводится анализ, велики. Это мощное средство, если N > 100 значений. Однако при анализе экономических ситуаций иногда бывает довольно трудно (или невозможно) найти 100 одинаковых процессов, развивающихся с различными исходными данными. Сложность заключается не только в том, что не бывает одинаковых объектов экономики: даже если такие объекты имеются, то к исходным данным относятся не только исходные вероятностные данные и особенности структуры объекта, но и сценарий развития процессов в этом объекте и в тех объектах внешней среды, с которыми он взаимодействует (процессы рынка, указы правительства, принятие новых законов, требования налоговых органов, платежи в бюджеты различных уровней). При относительно малых объемах выборок этот критерий вообще неприменим. Критерий Крамераг-фон Мизеса дает хорошие результаты при малых объемах выборок (при N < 10). Однако следует отметить два обстоятельства: 1) при N < 10, каким бы методом ни пользоваться, вопрос о доверительной вероятности при проверке статистической гипотезы решается плохо (эта вероятность мала при значительных размерах доверительных интервалов); 2) метод Монте-Карло используется как раз для того, чтобы недостающие данные собрать с помощью специального вычислительного статистического инструментария и компьютера. Поэтому будем полагать, что реальные объемы выборок, которые можно получить, находятся в пределах 10 < N < 100. Как указывают многие исследователи, для указанных пределов хорошие результаты дает критерий Колмогорова-Смирнова. Он применяется в тех случаях, когда проверяемое распределение непрерывно и известны среднее значение и дисперсия проверяемой совокупности.
|