Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

История развития искусственного интеллекта за рубежом

ЧТО ТАКОЕ ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ. 3

1. ИСТОРИЯ РАЗВИТИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА.. 4

1.1. История развития искусственного интеллекта за рубежом.. 4

1.1.1. Ключевые этапы развития ИИ и становление ЭС.. 9

1.2. История развития искусственного интеллекта в России. 9

1.3. Основные направления исследований в ИИ.. 10

1.4. Перспективные направления искусственного интеллекта. 20

1.5. Различные подходы к построению современных интеллектуальных. 21

2. СТРУКТУРА ИНТЕЛЛЕКТУАЛЬНОЙ СИСТЕМЫ... 25

3. ДАННЫЕ И ЗНАНИЯ.. 27

3.1. Формы представления знаний: императивные, декларативные, комбинированные формы представления знаний. 31

3.2. Модели представления знаний. 32

3.2.1. Формальные логические модели. 32

3.2.2. Продукционная модель. 36

3.2.3.Семантические сети. 45

3.2.4.Фреймы.. 53

4. Представление и обработка нечетких знаний. 74

4.1. Подход на основе условных вероятностей (теоремы Байеса) 76

4.2. Подход с использованием коэффициентов уверенности. 81

4.3. Нечеткая логика Заде. 86

5. Методы поиска решений в сложных пространствах. 89

5.1. Методы поиска в одном пространстве. 90

5.2. Способы формализации задач. Представление задач в пространстве состояний. 93

5.3. Алгоритмы поиска решения (в пространстве состояний) 96

5.4. Эвристический (упорядоченный) поиск. 101

Библиографический список. 104

Оглавление. 105

 

ЧТО ТАКОЕ ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ

Наука под названием «искусственный интеллект» входит в комплекс компьютерных наук, а создаваемые на ее основе технологии относятся к информационным технологиям.

Искусственный интеллект - это одно из направлений информатики, цель которого разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои задачи, традиционно считающиеся интеллектуальными, общаясь с ЭВМ на ограниченном подмножестве естественного языка.

Задачей этой науки является обеспечение разумных рассуждений и действий с помощью вычислительных систем и иных искусственных устройств.

На этом пути возникают следующие главные трудности:

а) в большинстве случаев до получения результата не известен алгоритм решения задачи. Например, точно неизвестно, как происходит понимание текста, поиск доказательства теоремы, построение плана действий, узнавание изображения.

б) искусственные устройства (например, компьютеры) не обладают достаточным уровнем начальной компетентности. Специалист же добивается результата, используя свою компетентность (в частности, знания и опыт).

Это означает, что искусственный интеллект представляет собой экспериментальную науку. Экспериментальность искусственного интеллекта состоит в том, что создавая те или иные компьютерные представления и модели, исследователь сравнивает их поведение между собой и с примерами решения тех же задач специалистом, модифицирует их на основе этого сравнения, пытаясь добиться лучшего соответствия результатов.

Чтобы модификация программ «монотонным» образом улучшала результаты, надо иметь разумные исходные представления и модели. Их доставляют психологические исследования сознания, в частности, когнитивная психология.

Важная характеристика методов искусственного интеллекта – он имеет дело только с теми механизмами компетентности, которые носят вербальный характер (допускают символьное представление). Далеко не все механизмы, которые использует для решения задач человек, таковы.

 

ИСТОРИЯ РАЗВИТИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

История развития искусственного интеллекта за рубежом

Идея создания искусственного подобия человеческого разума для решения сложных задач моделирования мыслительной способности витала в воздухе с древнейших времен. Впервые ее выразил Р.Луллий (ок.1235- ок.1315), который еще в XIV в. пытался создать машину для решения различных задач на основе всеобщей классификации понятий.

В XVIII в. Г.Лейбниц (1646 - 1716) и Р.Декарт (1596- 1650) независимо друг от друга развили эту идею, предложив универсальные языки классификации всех наук. Эти идеи легли в основу теоретических разработок в области создания искусственного интеллекта.

Развитие искусственного интеллекта как научного направления стало возможным только после создания ЭВМ. Это произошло в 40-х гг. XX в. В это же время И.Винер (1894- 1964) создал свои основополагающие работы по новой науке - кибернетике.

Термин искусственный интеллект (artificial intelligence) предложен в 1956 г. на семинаре с аналогичным названием в Станфордском университете (США). Семинар был посвящен разработке логических, а не вычислительных задач. Вскоре после признания искусственного интеллекта самостоятельной отраслью науки произошло разделение на два основных направления: нейрокибернетику и кибернетику"черного ящика" (или бионическое и прагматическое направления). И только в настоящее время стали заметны тенденции к объединению этих частей вновь в единое целое.

Основную идею нейрокибернетики можно сформулировать следующим образом. Единственный объект, способный мыслить, - это человеческий мозг. Поэтому любое "мыслящее" устройство должно каким-то образом воспроизводить его структуру.

Таким образом, нейрокибериетика ориентирована на аппаратное моделирование структур, подобных структуре мозга. Физиологами давно установлено, что основой человеческого мозга является большое количество связанных между собой и взаимодействующих нервных клеток - нейронов. Поэтому усилия нейрокибернетики были сосредоточены на создании элементов, аналогичных нейронам, и их объединении в функционирующие системы. Эти системы принято называть нейронными сетями, или нейросетями.

Первые нейросети были созданы в конце 50-х гг. американскими учеными Г.Розенблаттом и П.Мак-Кигюком. Это были попытки создать системы, моделирующие человеческий глаз и его взаимодействие с мозгом. Устройство, созданное ими, получило название перцептрона. Оно умело различать буквы алфавита, но было чувствительно к их написанию, например, буквы А, А и А для этого устройства были тремя разными знаками. Постепенно в 70-80 гг. количество работ по этому направлению искусственного интеллекта стало снижаться. Слишком неутешительны оказались первые результаты. Авторы объясняли неудачи малой памятью и низким быстродействием существующих в то время компьютеров.

Однако в середине 80-х гг. в Японии в рамках проекта разработки компьютера V поколения, основанного на знаниях, был создан нейрокомпьютер. К этому времени ограничения по памяти и быстродействию были практически сняты. Появились транспьютеры - параллельные компьютеры с большим количеством процессоров. От транспьютеров был один шаг до нейрокомпьютеров, моделирующих структуру мозга человека. Основная область применения нейрокомпьютеров - распознавание образов.

В настоящее время используются три подхода к созданию нейросетей:

аппаратный - создание специальных компьютеров, плат расширения, наборов микросхем, реализующих все необходимые алгоритмы,

программный - создание программ н инструментариев, рассчитанных на высокопроизводительные компьютеры. Сети создаются в памяти компьютера, всю работу выполняют его собственные процессоры;

гибридный - комбинация первых двух. Часть вычислений выполняют специальные платы расширения (сопроцессоры), часть - программные средства.

В основу кибернетики "черного ящика" лег принцип, противоположный нейрокибернетике. Не имеет значения, как устроено "мыслящее" устройство. Главное, чтобы на заданные входные воздействия оно реагировало так же, как человеческий мозг.

Это направление искусственного интеллекта было ориентировано на поиски алгоритмов решения интеллектуальных задач на существующих моделях компьютеров. В 1954 -1963 гг. велись интенсивные поиски моделей и алгоритма человеческого мышления и разработка первых программ. Оказалось, что ни одна из существующих наук - философия, психология, лингвистика - не может предложить такого алгоритма. Тогда кибернетики предложили создать собственные модели. Были созданы и опробованы различные подходы.

В конце 50-х гг. родилась модель лабиринтного поиска. Этот подход представляет задачу как некоторый граф, отражающий пространство состояний, и в этом графе проводится поиск оптимального пути от входных данных к результирующим. Была проделана большая работа по разработке этой модели, но в решении практических задач идея большого распространения не получила,

 

В 1954 году американский исследователь А.Ньюэлл (A.Newel) решил написать программу для игры в шахматы. Этой идеей он поделился с аналитиками корпорации «РЭНД» (RAND Corporation) Дж. Шоу (J.Show) и Г.Саймоном (H.Simon), которые предложили Ньюэллу свою помощь. В качестве теоретической основы такой программы было решено использовать метод, предложенный в 1950 году Клодом Шенноном (C.E. Shannon), основателем теории информации. Точная формализация этого метода была выполнена Аланом Тьюрингом (Alan Turing). Он же промоделировал его вручную.

К работе была привлечена группа голландских психологов под руководством А. Де Гроота (A. de Groot), изучавших стили игры выдающихся шахматистов. Через два года совместной работы этим коллективом был создан язык программирования ИПЛ1 - по-видимому первый символьный язык обработки списков. Вскоре была написана и первая программа, которую можно отнести к достижениям в области искусственного интеллекта. Эта была программа "Логик-Теоретик" (1956 г.), предназначенная для автоматического доказательства теорем в исчислении высказываний.

Собственно же программа для игры в шахматы, NSS, была завершена в 1957 г. В основе ее работы лежали так называемые эвристики (правила, которые позволяют сделать выбор при отсутствии точных теоретических оснований) и описания целей. Управляющий алгоритм пытался уменьшить различия между оценками текущей ситуации и оценками цели или одной из подцелей.

Начало 60-х гг. - эпоха эвристического программирования. Эвристика - правило, теоретически не обоснованное, но позволяющее сократить количество переборов в пространстве поиска. Эвристическое программирование - разработка стратегии действий на основе известных, заранее заданных эвристик.

В 1960 г. той же группой, на основе принципов, использованных в NSS, была написана программа, которую ее создатели назвали GPS (General Problem Solver )-Универсальный решатель задач. Система GPS была универсальной в том отношении, что "не было конкретного указания, к какой области относится задача". Пользователь должен был задать "проблемную среду" в терминах объектов и тех операторов, которые к ним применимы. Но эта универсальность относилась лишь к ограниченной области математических головоломок с относительно небольшим множеством сocтояний и хорошо очерченных формальных правил. Система GPS функционировала в таком формализованном микромире, где возникающие проблемы, с точки зрения людей, проблемами и не являются.

С технической точки зрения можно сказать, что процесс, известный как "поиск в глубину" и состоящий в последовательном разбиении задачи на подзадачи, пока не будет получена легко решаемая подзадача, является малоэффективным по той причине, что большое число тупиковых направлений подвергается весьма тщательному анализу. Впоследствии исследователи разработали более эффективные стратегии "поиска в ширину".

Эти результаты привлекли внимание специалистов в области вычислений. Появились программы автоматического доказательства теорем из планиметрии и решения алгебраических задач (сформулированных на английском языке).

В конце 60-х годов появились первые игровые программы, системы для элементарного анализа текста и решения некоторых математических задач (геометрии, интегрального исчисления). В возникавших при этом сложных переборных проблемах количество перебираемых вариантов резко снижалось применением всевозможных эвристик и «здравого смысла». Такой подход стали называть эвристическим программированием. Дальнейшее развитие эвристического программирования шло по пути усложнения алгоритмов и улучшения эвристик. Однако вскоре стало ясно, что существует некоторый предел, за которым никакие улучшения эвристик и усложнения алгоритма не повысят качества работы системы и, главное, не расширят ее возможностей. Программа, которая играет в шахматы, никогда не будет играть в шашки или карточные игры.

В 1963- 1970 гг. к решению задач стали подключать методы математической логики. Джона Маккарти (J.McCarty) из Стэнфорда заинтересовали математические основы этих результатов и вообще символьных вычислений. В результате в 1963 г. им был разработан язык ЛИСП (LISP, от List Processing), основу которого составило использование единого спискового представления для программ и данных, применение выражений для определения функций, скобочный синтаксис.

В 1965 г. в США появляется работа Дж.А.Робинсона (J.A.Pobinson) , посвященная несколько иному методу автоматического поиска доказательства теорем в исчислении предикатов первого порядка. Этот метод был назван методом резолюций и послужил отправной точкой для создания нового языка программирования со встроенной процедурой логического вывода - языка Пролог (PROLOG) в 1971.

Постепенно исследователи стали понимать, что всем ранее созданным программам недостает самого важного - знаний в соответствующей области. Специалисты, решая задачи, достигают высоких результатов, благодаря своим знаниям и опыту; если программы будут обращаться к знаниям и применять их, то они тоже достигнут высокого качества работы.

Это понимание, возникшее в начале 70-х годов, по существу, означало качественный скачок в работах по искусственному интеллекту, когда на смену поискам универсального алгоритма мышления пришла идея моделировать конкретные знания специалистов-экспертов. Основополагающие соображения на этот счет высказал в 1977 году на 5-й Объединенной конференции по искусственному интеллекту американский ученый Э.Фейгенбаум (E.Feigenbaum).

Уже к середине 70-х годов появляются первые прикладные интеллектуальные системы, использующие различные способы представления знаний для решения задач - экспертные системы. Экспертная система (ЭС) – это программа, в которую заложены теоретические и практические знания высококвалифицированных специалистов в некоторой конкретной проблемной области и которая способна давать рекомендации по проблемам в этой области с высокой степенью надежности на уровне этих специалистов.

Одной из первых была экспертная система DENDRAL, разработанная в Станфордском университете группой ученых, возглавляемой Эдвардом Фейгенбаумом и предназначенная для порождения формул химических соединений на основе спектрального анализа. В настоящее время DENDRAL поставляется покупателям вместе со спектрометром. Система MYCIN предназначена для диагностики и лечения инфекционных заболеваний крови. Она была родоначальником целой серии медико-диагностических машин, которые используются в рутинной клинической практике. Система MICIN ввела в рассмотрение несколько характеристик, которые стали отличительной чертой экспертных систем. Во-первых, ее знания представляют сотни продукционных правил “если - то”; во-вторых, правила являются вероятностными; в-третьих, используются коэффициенты уверенности; в-четвертых, система может объяснить свой процесс рассуждений. Известная система PROSPECTOR прогнозирует залежи полезных ископаемых. Имеются сведения о том, что с ее помощью были открыты залежи молибдена, ценность которых превосходит 100 миллионов долларов. Система оценки качества воды, реализованная на основе российской технологии SIMER + MIR выявляет причины превышения предельно допустимых концентрациий загрязняющих веществ в Москве-реке в районе Серебрянного Бора. Система CASNET предназначена для диагностики и выбора стратегии лечения глаукомы и т.д.

В настоящее время разработка и реализация экспертных систем выделилась в самостоятельную инженерную область.

Начиная с середины 80-х гг. происходит коммерциализация искусственного интеллекта. Растут ежегодные капиталовложения, создаются промышленные экспертные системы. Искусственный интеллект перенес внимание на область проблем машинного обучения.

Дуг Ленат создал машинную общающуюся систему EURISCO, которая автоматически улучшает и расширяет свой запас эвристических правил. Кроме того, что эта система выигрывала три года подряд в военной игре (несмотря на то, что правила игры каждый раз менялись, чтобы помешать ей это сделать), она смогла произвести переворот в области создания СБИС (сверхбольших интегральных схем), изобретя трехмерный узел типа И/ИЛИ.

В начале 90-х годов исследованиях по искусственному интеллекту сформировалось самостоятельное направление – “инженерия знаний”. Ведутся работы по созданию динамических интеллектуальных систем, т.е. систем, учитывающих изменения, происходящие в окружающем мире за время исполнения приложения.




<== предыдущая лекция | следующая лекция ==>
Эвристический (упорядоченный) поиск | 

Дата добавления: 2015-10-19; просмотров: 1483. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.005 сек.) русская версия | украинская версия