Студопедия — Ткань, как один из уровней организации живого. Определение. Классификация. 9 страница
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ткань, как один из уровней организации живого. Определение. Классификация. 9 страница






8.Морфо-функциональная характеристика лимфатических сосудов. Классификация. Строение. Особенности строения лимфатических капилляров. Классификация: лимфатические капилляры, интра- и экстраорганные лимфатические сосуды и главные лимфатические стволы тела - грудной проток и правый лимфатический проток. Лимфатические капилляры. Начальные отделы лимфатической системы, в которые из тканей поступают тканевая жидкость вместе с продуктами обмена веществ, а в патологических случаях – инородные частицы и микроорганизмы. Это система замкнутых с одного конца, уплощенных эндотелиальных трубок, аностомозирующих друг с другом и пронизывающих органов. Диаметр больше, чем кровеносных. Стенка состоит из эндотелиальных клеток. Базальная мембрана и перициты отсутствуют. Эндотелиальная выстилка тесно связана с окружающей соединительной тканью с помощь стропных или фиксирующих филаментов, которые вплетаются в коллагеновые волокна, расположенные вдоль лимфатических капилляров. Отводящие лимфатические сосуды. Отличительная особенность: наличие клапанов, хорошо развитая наружная оболочка. Мелкие сосуды: мышечные элементы отсутствуют их стенка состоит из эндотелия и соединительнотканной оболочки, кроме клапанов. Средние и крупные имеют три хорошо развитые оболочки. Внутренняя оболочка покрыта эндотелием, находятся продольно и косо расположенные коллагеновые и эластические волокна. Формирует внутренние клапаны. Участки между двумя соседними клапанами называются лимфангион. В нем выделяют мышечную манжетку, стенку клапанного синуса и область прикрепления клапана. Клапаны состоят из центральной соединительнотканной пластинки, покрытой с внутренней и наружной поверхностью эндотелия. Под эндотелием располагается эластическая мембрана. В толще лежит гладкие мышечные клетки. На границе внутренней и средней оболочек лежит четко выраженная внутренняя эластическая мембрана. Средняя оболочка. Слабо развита в сосудах головы, верхней части туловища и верхних конечностей. Здесь находятся пучки гладких мышечных клеток, имеющих косое и циркулярное направление. Наружная оболочка образована рыхлой волокнистой неоформленной соединительной тканью, которая переходит в окружающую соединительную ткань, иногда там встречаются продольно направленные гладкие мышечные волокна.

 

Органы кроветворения

1.Гемопоэз. Понятие о стволовых и полустволовых клетках, гистологических дефферонах гемопоэза. Особенности эмбрионального и постэмбрионального кроветворения.

2.Строение красного костного мозга. Взаимодействие гемопоэтических клеток, стомальных элементов и капилляров органа. Желтый костный мозг. Красный костный мозг. Заполняет губчатое вещество плоских и трубчатых костей. Ретикулярные клетки. Выполняют механическую функцию, секретирует преколлаген, проэластин и учувствует в создании кроветворного микроокружения, выделяют ростовые факторы. Остеогенные клетки. Это стволовые клетки опорных тканей, остеобласты и их предшественники. Способны вырабатывать ростовые факторы. Адипоциты. Адвентициальные клетки сопровождают кровеносные сосуды и покрывают наружную поверхность синусоидных капилляров. Эндотелиальные клетки. Принимают участие в организации стромы и процессов кроветворения. Эндотелиоциты способны к сократительным движениям, способствуют выталкиванию клеток крови в синусоидные капилляры. Они выделяют колониестимулирующие факторы и фибронектин, обеспечивающий прикрепление клеток друг к другу и субстрату. Макрофаги. Богаты лизосомами и фагосомами. Некоторые секретируют БАВ. Макрофаги проникают через стенку синусов, улавливают из кровотока железосодержащее соединение и передают его развивающимся эритроидным клеткам для построения геминовой части гемоглобина. Межклеточное вещество содержит коллаген, гликопротеины, протеогликаны. Гемопоэтические клетки. Гранулоцитопоэтические клетки образуют островки по периферии костномозговой полости. Незрелые клетки окружены протеогликанов, в процессе созревания они депонируются в красном костном мозге. Мегакариобласты и мегакариоциты. Располагаются в тесном контакте с синусами так, что периферическая часть цитоплазмы из проникает в просвет сосуда через поры. Отделение фрагментов цитоплазмы в виде тромбоцитов происходит непосредственно в кровяное русло. Среди островков клеток миелоидного ряда встречаются небольшие скопления костномозговых лимфоцитов и моноцитов, которые окружают кровеносный сосуд. Желтый костный мозг. Находится в диафизах трубчатых костей. В его составе жировые клетки. Васкуляризация. Снабжается кровью по сосудам, проникающим через надкостницу в специальные отверстия в компактном веществе кости. Войдя в костный мозг, артерии разветвляются на восходящую и нисходящую ветви, от которых радиально отходят артериолы. Из синусов кровь собирается в центральную венулу. К базальной мембране снаружи прилежат адвентициальные клетки, которые не образуют сплошного слоя, что создает благоприятные условия для миграции клеток костного мозга в кровь. По мере контакта с костным мозгом кровь обогащается минеральными солями и регуляторами кроветворения. Кровеносные сосуды составляют 50% массы костного мозга. Артерии имеют среднюю и адвентициальную оболочку, многочисленные тонкостенные вены. Капилляры выстланы эндотелиоцитами, лежащими на прерывистой базальной мембране. Иннервация. Участвуют нервы сосудистых сплетений, мышц, проводники к костному мозгу. Проникают в мозг через костные каналы. Далее покидают их и продолжаются как самостоятельные веточки. Они ветвятся на тонкие волоконца, которые либо вступают в контакт с костномозговыми сосудами и оканчиваются в их стенке, либо заканчиваются свободно среди клеток костного мозга. Возрастные изменения. Красный костный мозг в детстве заполняет эпифизы и диафизы трубчатых костей и находится в губчатом веществе плоских костей. Примерно в 12-18 лет красный замещается на желтый в диафизах. В старческом костный мозг приобретает слизистую консистенцию и называется желатинозным костным мозгом. Регенерация. Источником образования являются стволовые клетки, находящиеся в тесном взаимодействии с ретикулярной стромальной тканью. Скорость регенерации костного мозга связана с микроокружением и специальными ростстимулирующимим факторами гемопоэза.

3.Строение и функциональное значение тимуса. Взаимодействие стромальных и гемопоэтичисеких элементов в ходе лимфопоэза. Эндокринная функция тимуса. Понятие о возрастной и акцидентальной инволюции вилочковой железы. Снаружи покрыта соединительнотканной капсулой, от нее внутрь отходят перегородки, разделяющие железу на дольки. В каждой дольке различают корковое и мозговое вещество. В основе органа лежит эпителиальная ткань, состоящая из эпителиоретикулоцитов. Секреторные клетки коры и мозгового вещества. Содержат вакуоли, тимулин, тимопоэтин. В субкапсулярной зоне расположены лимфоциты. Вспомогательные клетки: макрофаги и дендритные клетки. Они выделяют ростовые факторы, влияющие на дифференцировку Т-лимфоцитов. Корковое вещество. Содержит Т-лимфоциты. В подкапсулярной зоне находятся лимфобласты (предшественники Т-лимфоцитов). Они под влиянием тимозина, выделяемого эпителиоретикулоцитов, пролиферируют. Новые генерации лимфоцитов появляются каждые 6-9 часов. Т-лимфоциты мигрируют в кровоток, не входя в мозговое вещество. Они отличаются по составу рецепторов от Т-лимфоцитов мозгового вещества. С током крови они попадают в периферические органы лимфопоэза (лимфатические узлы и селезенку), где созревают до киллеров, хелперов, супрессоров. Лимфоциты, имеющие циторецепторы к собственным антигенам погибают в тимусе, при попадании их в кровоток развивается аутоиммунная реакция. Клетки коркового вещества отделены от крови гематотимусным барьером, предохраняющим дифференцирующиеся лимфоциты от избытка антигенов. В его состав входят эндотелиальные клетки гемокапилляров с базальной мембраной, перикапиллярное пространство с единичными лимфоцитами, макрофаги и межклеточным веществом, эпителиоретикулоциты с базальной мембраной. Барьер обладает изберательной проницаемостью по отношению к антигену. При нарушении обнаруживаются единичные плазматические клетки, зернистые лейкоциты и тучные клетки. Мозговое вещество. Это рециркулирующий пул Т-лимфоцитов, которые могут выходить в кровоток через посткапиллярные венулы. В средней части мозгового вещества расположены слоистые эпителиальные тельца. Они образованы наслоенными эпителиоретикулоцитами, цитоплазма которых содержит крупные вакуоли, гранулы кератина и пучки фибрилл. Количество этих телец увеличивается к периоду половой зрелости, затем уменьшается. Функция не установлена. Васкуляризация. Внутри органа артерии ветвятся на междольковые и внутридольковые, которые образуют дуговые ветви. Капилляры окружены непрерывной базальной мембраной и слоем эпителиальных клеток, отграничивающим перикапиллярное пространство. Оно заполнено тканевой жидкостью, встречаются лимфоциты и макрофаги. Большая часть переходит в подкапсулярные венулы. Меньшая часть идет в мозговое вещество и на границе с корковым переходит в посткапиллярные венулы, отличающиеся высоким призматическим эпителием. Лимфатическая система представлена глубокой и поверхностной выносящей сетью капилляров. Паренхиматозная капиллярная сеть особенно богата в корковом веществе, а в мозговом капилляры обнаружены вокруг эпителиальных слоистых телец. Лимфатические капилляры собираются в сосуды междольковых перегородок, идущие вдоль кровеносных сосудов. Возрастная и акцидентальная инволюция тимуса. Тимус достигает максимального развития в раннем возрасте. В период с 3 до 20 лет наблюдается стабилизация ее массы. В более позднее время происходит обратное развитие тимуса. Это сопровождается уменьшением количества лимфоцитов, особенно в корковом веществе, появлением липидных включений в соединительнотканных клетках и развитием жировой ткани. Акцидентальная инволюция может происходить в связи с возжействием на организм различных раздражителей (травма, интоксикация, инфекция, голодание). При стресс-реакции происходит выброс Т-лимфоцитов в кровь и массовая гибель лимфоцитов в самом органе. В связи с этим становится менее заметная граница коркового и мозгового вещества. Кроме лимфоцитолиза наблюдается фагоцитоз макрофагами внешне не измененных лимфоцитов. Одновременно с гибелью лимфоцитов происходит разрастание эпителиоретикулоцитов, они набухают, в цитоплазме появляются секретоподобные капли. Иногда они скапливаются между клетками, образуя подобие фолликулов. Тимус вовлекается в стресс-реакцию вместе с надпочечниками. Увеличение количества глюкортикоидов приводит к быстрой и акцидентальной инволюции. Тимус играет роль в формировании тимусзависимых лимфоцитов, селекции лимфоцитов, регуляции пролиферации и дифференцировки в периферических кроветворных органах благодаря тимозину. Также выделяет: инсулинподобный фактор (понижает содержание сахара в крови); кальцитонинподобный (снижает концетрацию кальция в крови) и фактор роста.

4.Селезенка. Морфо-функциональная характеристика белой и красной пульпы. Т- и В-зоны лимфопоэза. Синусы. Лимфоидные узелки слизистых оболочек различных органов. СЕЛЕЗЕНКА – важный лимфопоэтический орган. ФУНКЦИИ СЕЛЕЗЕНКИ: пролиферация (размножение) Т- и В-лимфоцитов; антигензависимая дифференцировка Т- и В-лимфоцитов; эндокринная (выработка веществ, угнетающих эритропоэз); Защитная: депонирование крови; разрушение эритроцитов и тромбоцитов. Строение. Селезенка человека покрыта соединительнотканной капсулой и брюшиной. Толщина капсулы неодинакова в различных участках селезенки. Наиболее толстая капсула в воротах селезенки, через которые проходят кровеносные и лимфатические сосуды. Капсула состоит из плотной волокнистой соединительной ткани, содержащей фибробласты и многочисленные коллагеновые и эластические волокна. Между волокнами залегает небольшое количество гладких мышечных клеток. Внутрь от капсулы отходят перекладины — трабекулы селезенки, которые в глубоких частях органа анастомозируют между собой. Капсула и трабекулы в селезенке человека занимают примерно 5—7 % от общего объема органа и составляют его опорно-сократительный аппарат. В трабекулах селезенки человека сравнительно немного гладких мышечных клеток. Эластические волокна в трабекулах более многочисленны, чем в капсуле. В селезенке различают белую пульпу и красную пульпу. В основе пульпы селезенки лежит ретикулярная ткань, образующая ее строму. Строма органа представлена ретикулярными клетками и ретикулярными волокнами, содержащими коллаген III и IV типов. Белая пульпа селезенки. Представляет собой совокупность лимфоидной ткани, расположенной в адвентиции ее артерий в виде шаровидных скоплений, или узелков, и лимфатических периартериальных влагалищ. В целом они составляют примерно '/5 органа. Лимфатические узелки селезенки 0,3—0,5 мм в диаметре представляют собой скопления Т- и В-лимфоцитов, плазмоцитов и макрофагов в петлях ретикулярной ткани (дендритных клеток), окруженные капсулой из уплощенных ретикулярных клеток. Через лимфатический узелок проходит, обычно эксцентрично, центральная артерия, от которой отходят радиально капилляры. В лимфатических узелках различают 4 нечетко разграниченные зоны: периартериальную, центр размножения, мантийную и краевую, или маргинальную, зону. Периартериальная зона занимает небольшой участок узелка около центральной артерии и образована главным образом из Т-лимфоцитов, попадающих сюда через гемокапилляры, отходящие от артерии лимфатического узелка, и интердигитирующих клеток. Субмикроскопические отростки этих клеток вытягиваются на значительное расстояние между окружающими их лимфоцитами и плотно с ними контактируют. Полагают, что эти клетки адсорбируют антигены, поступающие сюда с кровотоком, и пере­дают Т-лимфоцитам информацию о состоянии микроокружения, стимули­руя их бласттрансформацию и пролиферацию. В течение 2—3 сут активиро­ванные Т-лимфоциты остаются в этой зоне и размножаются. В дальнейшем они мигрируют из периартериальной зоны в синусы краевой зоны через ге-мокапилляры. Тем же путем попадают в селезенку и В-лимфоциты. Причи­на заселения Т- и В-лимфоцитами «своих» зон недостаточно ясна. В функ­циональном отношении периартериальная зона является аналогом паракортикальной тимусзависимой зоны лимфатических узлов. Центр размножения, или герминативный центр узелка, со­стоит из ретикулярных клеток и пролиферирующих В-лимфобластов, диф­ференцирующихся антителообразующих плазматических клеток. Кроме того, здесь нередко можно обнаружить скопления макрофагов с фагоцитирован­ными лимфоцитами или их фрагментами в виде хромофильных телец и ден­дритные клетки. В этих случаях центральная часть узелка выглядит светлой («реактивный центр»). На границе со следующей, мантийной зоной обнаруживаются диффе­ренцирующиеся плазмоциты. В функциональном отношении эта область идентична герминативным центрам лимфоидных узелков в лимфатических узлах. Мантийная зона окружает периартериальную зону и центр размно­жения, состоит главным образом из плотно расположенных малых В-лим­фоцитов и небольшого количества Т-лимфоцитов, а также содержитjina3-моциты и макрофаги. Прилегая плотно друг к другу, клетки образуют как бы корону, расслоенную циркулярно направленными толстыми ретикуляр­ными волокнами. Краевая, или маргинальная, зона узелков селезенки представля­ет собой переходную область между белой и красной пульпой шириной около 100 мкм. Она состоит преимущественно из Т- и В-лимфоцитов и еди­ничных макрофагов, окружена краевыми, или маргинальными, синусоидными сосудами с щелевидными порами в стенке. Периартериальные лимфатические влагалища представляют собою вытянутые по ходу пульпарной артерии скопле­ния В-лимфоцитов, плазматических клеток, а по периферии влагалища — малых Т-лймфоцитов. Антигены, приносимые кровью, задерживаются в маргинальной зоне и крас­ной пульпе. Далее они переносятся макрофагами на поверхность антигенпредставляющих клеток (дендритных и интердигитирующих) белой пульпы. Лимфоциты из кровотока оседают в основном в периартериальной зоне (Т-лимфоциты) и в лимфоидных узелках (В-лимфоциты). При первичном иммунном ответе продуцирующие антитела клетки появляются сначала в эллипсоидных муфтах, а затем в красной пульпе. При вторичном ответе формируются центры размножения, где образуются клоны В-лимфоцитов и клетки памяти. Дифференцировка В-лимфоцитов в плазмоциты завершается в красной пульпе. Тимуснезависимые антигены вызывают акти­вацию В-лимфоцитов маргинальных зон. Независимо от вида антигена и способа его введения накопление лимфоцитов в селезенке происходит не столько за счет их пролиферации, сколько за счет притока уже стимулированных антигеном клеток. Красная пульпа селезенки. Состоит из ретикулярной ткани с расположен­ными на ней клеточными элементами крови, придающими ей красный цвет, и многочисленными кровеносными сосудами, главным образом синусоидного типа.

Часть красной пульпы, расположенная между синусами, называется селезеночными, или пульпарными, тяжами Здесь по ана­логии с мозговыми тяжами лимфатических узлов заканчивают свою дифференцировку и секретируют антитела плазмоциты, предшественники ко­торых перемещаются сюда из белой пульпы. Строма заполнена В-, Т-лим-фоцитами. В этих местах могут формироваться новые узелки. В красной пуль­пе задерживаются моноциты, которые дифференцируются в макрофаги. Селезенка считается «кладбищем эритроцитов» в связи с тем, что об­ладает способностью понижать осмотическую устойчивость старых или по­врежденных эритроцитов. Это приводит эритроциты к гибели. Такие эрит­роциты поглощаются макрофагами красной пульпы. В результате расщепле­ния гемоглобина поглощенных макрофагами эритроцитов образуются и выделяются в кровоток билирубин и содержащий железо трансферрин. Би­лирубин переносится в печень, где войдет в состав желчи. Трансферрин из кровотока захватывается макрофагами костного мозга, которые снабжают железом вновь развивающиеся эритроциты. В селезенке депонируется кровь и скапливаются тромбоциты. Старые тромбоциты подвергаются здесь разрушению. Васкуляризация. В ворота селезенки входит селезеночная артерия, кото­рая разветвляется на трабекулярные артерии. Наружная оболочка артерий рыхло соединена с тканью трабекул (см. рис.216). Средняя оболочка четко заметна на любом срезе трабекулярной артерии благодаря мышечным пуч­кам, идущим в составе ее стенки по спирали. От трабекулярных артерий отходят пульпарные артерии. В наружной оболочке этих артерий много спи­рально расположенных эластических волокон, которые обеспечивают про­дольное растяжение и сокращение сосудов. Недалеко от трабекул в адвен-тиции пульпарных артерий появляются периартериальные лимфатические влагалища и лимфатические узелки. Центральная артерия, проходящая через узелок отдает несколько гемокапилляров и, выйдя из узелка, разветвляется в виде кисточки на несколько кисточковых артериол. Дистальный конец этой артериолы продолжается в эллипсоидную артериолу, снабженную муф­той из ретикулярных клеток и волокон. Это своеобразный Тсрик-ктер на артериоле. У человека эти гильзы развиты очень слабо. В эндотелии гильзовых или эллипсоидных артериол обнаружены сократительные филаменты. Далее следуют короткие артериальные гемокапилляры. Большая часть капилляров красной пульпы впадает в венозные синусы (закрытое кро­вообращение), однако некоторые могут непосредственно открываться в ретикулярную ткань (открытое кровообращение). Закрытое кровообраще­ние — путь быстрой циркуляции и оксигенации тканей. Открытое кровооб­ращение — более медленное, обеспечивающее контакт форменных элемен­тов крови с макрофагами. Синусы являются началом венозной системы селезенки. Их диаметр ко­леблется от 12 до 40 мкм в зависимости от кровенаполнения. При расшире­нии совокупность всех синусов занимает большую часть селезенки. Эндотелиоциты синусов расположены на прерывистой базальной мембране. По поверхности стенки синусов в виде колец залегают ретикуляр­ные волокна. Синусы не имеют перицитов. Во входе в синусы и в месте их перехода в вены имеются подобия мышечных сфинктеров. При открытых артериальных и венозных сфинктерах кровь свободно проходит по синусам в вены. Сокращение венозного сфинктера приводит к накоплению крови в синусе. Плазма крови проникает сквозь стенку синуса, что способствует концентрации в нем клеточных элементов. В случае закрытия венозного и артериального сфинктеров кровь депонируется в селезенке. При растяжении синусов между эндотелиальными клетками образуются щели, через кото­рые кровь может проходить в ретикулярную строму. Расслабление артери­ального и венозного сфинктеров, а также сокращение гладких мышечных клеток капсулы и трабекул ведет к опорожнению синусов и выходу крови в венозное русло. Отток венозной крови из пульпы селезенки совершается по системе вен. Трабекулярные вены лишены собственного мышечного слоя; средняя оболоч­ка в них выражена очень слабо. Наружная оболочка вен плотно сращена с соединительной тканью трабекул. Такое строение вен обусловливает их зияние и облегчает выброс крови при сокращении гладких мышечных клеток селезенки. Между артериями и венами в капсуле селезенки, а также между пульпарными артериями встречаются анастомозы. Иннервация. В селезенке имеются чувствительные нервные волокна (дендриты нейронов спинномозговых узлов) и постганглионарные симпатичес­кие нервные волокна из узлов солнечного сплетения. Миелиновые и безмиелиновые (адренергические) нервные волокна обнаружены в капсуле, тра­бекулах и сплетениях вокруг трабекулярных сосудов и артерий белой пуль­пы, а также в синусах селезенки. Нервные окончания в виде свободных концевых веточек располагаются в соединительной ткани, на гладких мы­шечных клетках трабекул и сосудов, в ретикулярной строме селезенки. Возрастные изменения. В старческом возрасте в селезенке происходит атрофия белой и красной пульпы, вследствие чего ее трабекулярный аппа­рат вырисовывается более четко. Количество лимфатических узелков в селе­зенке и размеры их центров постепенно уменьшаются. Ретикулярные волок­на белой и красной пульпы грубеют и становятся более извилистыми. У лиц старческого возраста наблюдаются узловатые утолщения волокон. Количество макрофагов и лимфоцитов в пульпе уменьшается, а число зернистых лейкоцитов и тучных клеток возрастает. У детей и лиц старческого возраста обнаруживаются гигантские многоядерные клетки — мегакариоциты. Количество железосодержащего пигмента, отражающее процесс ги­бели эритроцитов, с возрастом в пульпе увеличивается, но располагается он главным образом внеклеточно. Регенерация. Физиологическое обновление лимфоидных и стромальных клеток происходит в пределах самостоятельных стволовых дифферонов. Эк­спериментальные исследования на животных показали возможность восста­новления селезенки после удаления 80—90 % ее объема (репаративная ре­генерация). Однако полного восстановления формы и размеров органа при этом, как правило, не наблюдается.

5.Лимфатические узлы. Морфо-функцианальная характеристика коркового и мозгового вещества. Т- и В-зоны лимфопоэза. Синусы. Лимфоидные узелки слизистых оболочек различных органов.

Лимфатические узлы располагаются по ходу лимфа­тических сосудов, являются органами лимфоцитопоэза, иммунной защиты и депонирования протекающей лимфы. В лимфатических узлах происходят антигензависимая пролиферация (клонирование) и дифференцировка Т- и В-лимфоцитов в эффекторные клетки, образование клеток памяти. Это округлые или овальные весьма мно­гочисленные образования размером около 0,5—1 см. Обычно лимфатичес­кие узлы с одной стороны имеют вдавление. В этом месте, называемом воротами, в узел входят артерии и нервы, а выходят вены и выносящие лимфатические сосуды. Сосуды, приносящие лимфу, входят с противоположной, выпуклой стороны узла. Благодаря такому расположению узла по ходу лимфатических сосудов он является не только кроветворным органом, но и своеобразным фильтром для оттекающей от тканей жидко­сти (лимфы) на пути в кровяное русло. Протекая через лимфатические узлы, лимфа очищается от инородных частиц и антигенов на 95—99 %, от избытка воды, белков, жиров, обогащается антителами и лимфоцитами. Строение. Сна­ружи узел покрыт соединительнотканной капсулой, несколько утолщенной в области ворот. В капсуле много коллагеновых и мало эластических воло­кон. Кроме соединительнотканных элементов, в ней главным образом в "области ворот располагаются отдельные пучки гладких мышечных клеток, особенно в узлах нижней половины туловища. Внутрь от капсулы через от­носительно правильные промежутки отходят тонкие соединительнотканные перегородки, или трабекулы, анастомозирующие между собой в глубоких частях узла. На срезах узла, проведенных через его ворота, можно различить периферическое, более плотное корковое вещество, состоящее из лимфати­ческих узелков, паракортикалъную (диффузную) зону, а также центральное светлое мозговое вещество, образованное мозговыми тяжами и синусами. Большая часть кортикального слоя и мозговые тяжи составляют область заселения В-лимфоцитов (В-зона), а паракортикальная, тимусзависимая зона содержит преимущественно Т-лимфоцитьг (Т-зона).

Корковое вещество Характерным структурным компонентом коркового вещества являются лимфатические узелки. Они представляют собой округ­лые образования диаметром около 0,5—1 мм. В ретикулярном остове узелков проходят толстые, извилистые ретику­лярные волокна, в основном циркулярно направленные. В петлях ретикуляр­ной ткани залегают лимфоциты, лимфобласты, макрофаги и другие клетки. В периферической части узелков находятся малые лимфоциты в виде короны. Лимфатические узелки покрыты ретикулоэндотелиальными клетками, лежащими на ретикулярных волокнах. Среди ретикулоэндотелиальных кле­ток много фиксированных макрофагов («береговые макрофаги»). Централь­ная часть узелков обычно выглядит светлой вследствие того, что она состо­ит из более крупных клеток с большими светлыми ядрами: из лимфобластов, типичных макрофагов, «дендритных клеток», лимфоцитов. Лимфоблас­ты обычно находятся в различных стадиях деления, вследствие чего эту часть узелка называют герминативным центром или цен­тром размножения. При интоксикации организма, особенно микробного происхождения, в центральной части узелка могут появляться скопления фагоцитирующих клеток, что указывает на высокую реактивность описыва­емых структур. Поэтому данную часть узелка часто называют еще реактив­ным центром. Типичные свободные макрофаги преобразуют корпускулярный антиген в молекулярный и концентрируют его до количества, способного побудить к пролиферации и дифференцировке расположенные рядом В-лимфоциты при участии Т-хелперов. В результате этого образуются клетки памяти Т- и В-типа и плазмобласты. Активированные антигеном В-лимфоциты по мере размножения и созревания образуют В-зону, откуда мигрируют в мозговые тяжи, где превращаются в плазмоциты и продуцируют антитела. Клетки памяти с током лимфы или через посткапиллярные вены вступают в цир­куляцию и будут созревать в эффекторные клетки после вторичной встречи с антигеном. Макрофаги светлых центров могут фагоцитировать также по­гибающие клетки, в результате чего в их цитоплазме обнаруживаются хро-мофильные остаточные тельца. Отростчатые («дендритные») клетки реактивных центров являются раз­новидностью макрофагов, способных с помощью рецепторов цитолеммы к фикyсации иммуноглобулинов, а через них и антигенов, вызвавших иммун­ный ответ организма. Накопленные на их поверхности антигены активиру­ют и вовлекают в иммунную реакцию контактирующие с ними В-лимфо­циты. Морфологически «дендритные» клетки характеризуются отростчатой формой, электронно-прозрачной цитоплазмой, бедной рибосомами, лизосомами и канальцами цитоплазматической сети. Полагают, что эти клетки характерны для В-зон лимфатических узелков. Длительная задержка антиге­нов на поверхности дендритных клеток и наличие клеток памяти обеспечи­вают более быстрый иммунный ответ при повторной встрече с тем же ан­тигеном.

Строение лимфатических узелков может меняться в зависимости от физиологического состояния организма. Различают 4 стадии, от­ражающие происходящие в них процессы. В I стадии — формирование цен­тра размножения — в лимфатическом узелке имеется небольшой центр, состоящий преимущественно из малодифференцированных клеток лимфо-цитопоэтического ряда. Некоторые из этих клеток могут быть в состоянии митотического деления. Во II стадии у лимфатических узелков центры круп­нее и содержат большое количество митотически делящихся клеток лимфо-цитопоэтического ряда (от 10 и более на срезе). Центральная часть узелка выглядит светлой. В III стадии вокруг светлых центров появляется корона из малых лимфоцитов. Уменьшаются число митотически делящихся клеток и количество молодых клеток лимфоцитопоэтического ряда. В IV стадии в центре узелка фигуры митозов и макрофаги единичны. Вокруг узелка коро­на из малых лимфоцитов состоит преимущественно из клеток В-памяти. Это стадия относительного покоя. Возникновение и исчезновение центров происходит в течение 2—3 сут.

Лимфоидные узелки содержат преимущественно В-лимфоциты на раз­ных стадиях антигензависимой дифференцировки. Антигены, попавшие в лимфатический узел с током лимфы, распространяются по синусам, дос­тигают поверхностной зоны центров размножения, фагоцитируются макро­фагами, частично переработанные фиксируются на их мембране и на мем­бране отростков дендритных клеток. В-лимфоциты также могут посредством своих рецепторов разносить антигенную информацию. Получив информа­цию об антигене, В-лимфоциты превращаются в иммунобласты, пролиферируют, часть клеток дифференцируется в плазматические клетки, другая становится клетками памяти. Паракортикальная зона. На границе между корковым и мозговым веществом располагается па­ракортикальная тимусзависимая зона. Она содержит главным образом Т-лимфоциты. Микроокружением для лимфоцитов паракортикальной зоны является разновидность макрофагов, потерявших способность к фагоцитозу, — «интердигитирующие клетки», которые обладают многочис­ленными пальцевидными отростками, вдавливающимися из одной клетки в другую. Ядра интердигитирующих клеток неправильной формы, светлые, с краевым расположением хроматина. В слабобазофильной цитоплазме об­наруживаются везикулы, аппарат Гольджи, гладкая эндоплазматическая сеть. Фагосомы встречаются редко. Эти клетки вырабатывают гликопротеиды, которые играют роль гуморальных факторов лимфоцитогенеза. Гликопротеиды примембранных слоев способны сорбировать и сохранять антиген на цитоплазматических мембранах и индуцировать пролиферацию Т-лимфоцитов.







Дата добавления: 2015-12-04; просмотров: 215. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия