Задачи оптимизации.
Можно выделить два типа задач оптимизации — безусловные и условные. Безусловная задача оптимизации состоит в отыскании максимума или минимума действительной функции (1.1) при действительных переменных и определении соответствующих значений аргументов на некотором множестве σ n-мерного пространства. Обычно рассматриваются задачи минимизации; к ним легко сводятся и задачи на поиск максимума путем замены знака целевой функции на противоположный. Условные задачи оптимизации, или задачи с ограничениями, это такие, при формулировке которых задаются некоторые условия (ограничения) на множестве. Эти ограничения задаются совокупностью некоторых функций, удовлетворяющих уравнениям или неравенствам. Ограничения-равенства выражают зависимость между, проектными параметрами, которая должна учитываться при нахождении решения. Эти ограничения отражают законы природы, наличие ресурсов т. п. в результате ограничений область проектирования, определяемая всеми проектными параметрами, может быть существенно уменьшена в соответствии с физической сущностью задачи. При наличие ограничений оптимальное решение может соответствовать либо локальному экстремуму в нутрии области проектирования, либо значению целевой функции на границе области. Если ограничения отсутствуют то ищется оптимальное решение на всей области проектирования, то есть глобальный экстремум.
Численные методы решения задач одномерной оптимизации. Задачи одномерной минимизации представляют собой простейшую математическую модель оптимизации, в которой целевая функция зависит от одной переменной, а допустимым множеством является отрезок вещественной оси: f(x) -> min, x принадлежит [a, b]. Максимизация целевой функции эквивалента минимизации (f(x) -> max) эквивалентна минимизации противоположной величины (-f(x) -> min), поэтому, не умаляя общности можно рассматривать только задачи минимизации. К математическим задачам одномерной минимизации приводят прикладные задачи оптимизации с одной управляемой переменной. Кроме того, необходимость в минимизации функций одной переменной возникает при реализации некоторых методов решения более сложных задач оптимизации. Для решения задачи минимизации функции f(x) на отрезке [a, b] на практике, как правило, применяют приближенные методы. Они позволяют найти решения этой задачи с необходимой точностью в результате определения конечного числа значений функции f(x) и ее производных в некоторых точках отрезка [a, b]. Методы, использующие только значения функции и не требующие вычисления ее производных, называются прямыми методами минимизации. Большим достоинством прямых методов является то, что от целевой функции не требуется дифференцируемости и, более того, она может быть не задана в аналитическом виде. Единственное, на чем основаны алгоритмы прямых методов минимизации, это возможность определения значений f(x) в заданных точках. Рассмотрим наиболее распространенные на практике прямые методы поиска точки минимума. Самым слабым требованием на функцию f(x), позволяющим использовать эти методы, является ее унимодальность. Поэтому далее будем считать функцию f(x) унимодальной на отрезке [a, b]. К численным методам решения задач одномерной оптимизации относятся: метод перебора, метод поразрядного поиска, метод деления пополам, метод золотого сечения.
Теория игр. Основные понятия. Решение игр в чистых стратегиях.
|