Студопедия — ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ КАК ПРИНЦИП ЭКВИВАЛЕНТНОСТИ ТЕПЛОТЫ И РАБОТЫ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ КАК ПРИНЦИП ЭКВИВАЛЕНТНОСТИ ТЕПЛОТЫ И РАБОТЫ






Еще древнему человеку было известно, что путем трения можно получить огонь. Но только в XIX в. познание этого явления получило количественное выражение и приобрело значение научного принципа – принципа эквивалентности теплоты и работы.

Р. Клаузиус назвал эквивалентность теплоты и работы первым началом термодинамики: "Во всех случаях, когда из теплоты появляется работа, тратится пропорциональное полученной работе количество теплоты, и наоборот, при затрате той или иной работы получается то же количество тепла".

Справедливость принципа эквивалентности теплоты и работы была доказана блестящими экспериментальными работами Р. Майера и Д. Джоуля. Майер был первым, кто попытался ответить на вопрос, какую работу требуется совершить для получения определенного количества теплоты. Выполнив эксперименты по расширению газа в разных условиях, он очень красиво решил эту важнейшую для физики задачу и на основании проведенных опытов получил значение механического эквивалента теплоты. Согласно полученным Майером результатам для получения 1 ккал тепла требуется совершить работу, примерно равную 4200 Дж.

Поясним, что калория – это внесистемная единица, которой и сегодня довольно широко пользуются для измерения тепловой энергии. Механическую же работу, как известно, принято измерять в джоулях. Используемая Майером "водяная калория" равнялась количеству теплоты, необходимому для нагревания 1 г воды от 14,5 до 15,5º С и она составляла 4,1855 Дж. В новейших системах единиц калория уже отсутствует, и джоуль также является единицей количества теплоты. Соотношение между двумя этими величинами называется механическим эквивалентом тепла. Поскольку на практике по-прежнему широко используются калории, то следует знать, что в настоящее время принято считать, что 1 кал = 4,1868 Дж.

Замечательный результат Майера был много раз подтвержден прямыми измерениями. Особое значение имели опыты Джоуля, определявшего работу, необходимую для нагревания жидкости. Нагревание производилось за счет помещенного в жидкость приспособления (мешалки). Одновременно измерялись и работа, затраченная на вращение мешалки, и теплота, полученная жидкостью. Как ни изменялись условия опыта (брались различные жидкости, разные сосуды и мешалки), результат был один и тот же: всегда при совершении одной и той же работы получалось одно и то же количество тепла.

Таким образом, если термодинамическая система, взаимодействуя с внешними телами, совершает работу А и получает количество теплоты Q, то после возвращения системы в исходное состояние согласно принципу эквивалентности

Q = A.  

Это равенство послужило основанием для появления выражения "превращение теплоты в работу".

Проведенные экспериментальные исследования позволили Р. Майеру и Д. Джоулю сформулировать закон сохранения энергии, который в формулировке Р. Майера утверждает: "В действительности существует лишь один единственный вид энергии. Он находится в вечном обмене и круговороте как в неживой, так и в живой природе; повсюду происходят процессы, в которых изменяется форма энергии. При всех физических и химических процессах данное значение энергии остается неизменным".

Далее в одной из своих работ Р. Майер приходит к утверждению: "Изучать энергию в ее различных формах, исследовать условия ее превращения – такова единственная задача физики".

Р. Клаузиус показал, что из принципа эквивалентности теплоты и работы вытекает существование такой функции состояния системы, изменение которой при переходе системы из одного состояния в другое всегда равно

.  

Эта функция состояния U и была названа внутренней энергией.

Рис. 4.10

Пусть система переходит из состояния а в состояние b двумя путями 1 и 2 (рис. 4.10). Обозначим количество теплоты и работу, которыми система обменивается с внешними телами в этих процессах, через Q 1 и А 1 и Q 2 и А 2. Вернем теперь систему в исходное состояние по пути 3, обозначая через Q 3 и А 3 соответствующие величины в этом процессе. Таким образом, можно рассмотреть два круговых процесса а-1-b-3-а и а-2-b-3-a, имея в виду, что для каждого из этих круговых процессов справедлив принцип эквивалентности (А = Q). С учетом этого,

и .  

Вычитая из второго равенства первое, находим:

, .  

Из полученного равенства следует, что при любом переходе системы (по любому пути) из начального состояния в конечное, при котором система получает количество теплоты Q и совершает работу А, величина Q – A сохраняет постоянное значение, следовательно, эта величина представляет собой изменения некоторой функции состояния, т.е. , где U 1 и U 2 – значения внутренней энергии в начальном и конечном состояниях.

Принцип эквивалентности может рассматриваться как первый закон термодинамики. Планк определил 1-е начало как универсальный принцип сохранения энергии в его применении к тепловым процессам. Значение этого принципа состоит в том, что он позволил навсегда отказаться от представления о теплоте, как особом веществе, содержащемся в теле. Главное же значение этого принципа заключается в том, что он стал очень надежным инструментом на пути познания законов природы.


Это интересно







Дата добавления: 2015-12-04; просмотров: 241. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия