Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нечеткая и интервальная формулировка модели





Идея преодоления проблемы операций над зависимыми нечеткими числами состоит в том, что число должно хранить не только свое текущее значение (включающее некоторым образом формализованную погрешность), но и информацию о том, из каких исходных данных и как это число было получено. Это дополнительно дает очень полезную в приложениях возможность анализа результатов численных экспериментов на предмет того, каким образом сказались на них заданные исходные данные. Однако буквальная реализация указанной идеи приводит к неадекватным затратам памяти и времени расчетов: фактически, нечеткое число превращается из значения в формулу зависимости значения от исходных данных; причем с каждым параметром этой формулы при арифметических операциях должны производиться сложные вычисления. Поэтому в целях экономии ресурсов нечеткое число предлагается представлять в виде линейной комбинации по нечетким числам — исходным данным.

 

Пусть R — множество всех вещественных чисел. Под

интервалом [а, b], а ≤ b, всюду ниже, если не оговорено

противное, понимается замкнутое ограниченное подмножество R вида


Множество всех интервалов обозначим через I(R). Элементы I(R) будем записывать прописными буквами. Если А — элемент I(R), , то его левый и правый концы будем обозначать как, В следующем пункте мы введем арифметические операции над интервалами, поэтому элементы I(R) называются также интервальными числами. Символы : и т. п. понимаются в обычном теоретико-множественном смысле, причем обозначает не обязательно строгое включение, т. е. соотношение допускает равенство интервалов. Два интервала А и В равны тогда, когда и

Отношение порядка на множестве I{R) определяется следующим образом: А < В тогда и только тогда, когда а < b. Возможно также упорядочение по включению: А не превосходит В, если . Мы, в основном, используем первое определение. Пересечение интервалов А и В пусто, если А < В или В <А, в противном случае = — снова интервал. Симметричным, по определению, является интервал , у которого . Шириной интервала А называется величина : = . Середина есть полусумма концов интервала . Абсолютная величина определяется как: . Наконец,

 
 

Арифметические операции над интервальными числами определяются следующим образом. Пусть * ^ {+, —, •. /}, . Тогда

 
 

причем в случае деления . Легко проверить, что определение эквивалентно соотношениям

 
 

Из определения видно, что интервальные сложение и умножение ассоциативны и коммутативны.

 







Дата добавления: 2015-06-15; просмотров: 396. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия