Элементы теории нечетких множеств
В основе нечеткой логики лежит теория нечетких множеств, изложенная в серии работ Л. Заде в 1965-1973 годах. Математическая теория нечетких множеств (fuzzy sets) и нечеткая логика (fuzzy logic) являются обобщениями классической теории множеств и классической формальной логики. Основной причиной появления новой теории стало наличие нечетких и приближенных рассуждений при описании человеком процессов, систем, объектов. Л. Заде, формулируя это главное свойство нечетких множеств базировался на трудах предшественников. В начале 1920-х годов польский математик Лукашевич трудился над принципами многозначной математической логики, в которой значениями предикатов могли быть не только «истина» или «ложь». В 1937 г. еще один американский ученый Макс Блэк впервые применил многозначную логику Лукашевича к спискам как множествам объектов и назвал такие множества неопределенными. Прежде чем нечеткий подход к моделированию сложных систем получил признание во всем мире, прошло не одно десятилетие с момента зарождения теории нечетких множеств. Нечеткая логика как научное направление развивалась сложно и непросто, не избежала она и обвинений в лженаучности. Даже в 1989 году, когда примеры успешного применения нечеткой логики в обороне, промышленности и бизнесе исчислялись десятками, Национальное научное общество США обсуждало вопрос об исключении материалов по нечетким множествам из институтских учебников. Первый период развития нечетких систем (конец 60-х–начало 70 гг.) характеризуется развитием теоретического аппарата нечетких множеств. В 1970 г. Беллман совместно с Заде разработал теорию принятия решений в нечетких условиях. Во втором периоде (70–80-е годы) появляются первые практические результаты в области нечеткого управления сложными техническими системами (парогенератор с нечетким управлением). И. Мамдани в 1975 г. спроектировал первый функционирующий на основе алгебры Заде контроллер, управляющий паровой турбиной. Одновременно стало уделяться внимание вопросам построения экспертных систем, построенных на нечеткой логике, разработке нечетких контроллеров. Нечеткие экспертные системы для поддержки принятия решений находят широкое применение в медицине и экономике. Наконец, в третьем периоде, который длится с конца 80-х годов и продолжается в настоящее время, появляются пакеты программ для построения нечетких экспертных систем, а области применения нечеткой логики заметно расширяются. Она применяется в автомобильной, аэрокосмической и транспортной промышленности, в области изделий бытовой техники, в сфере финансов, анализа и принятия управленческих решений и многих других. Кроме того, немалую роль в развитии нечеткой логики сыграло доказательство знаменитой теоремы FAT (Fuzzy Approximation Theorem) Б. Коско, в которой утверждалось, что любую математическую систему можно аппроксимировать системой на основе нечеткой логике. Одним из самых впечатляющих результатов стало создание управляющего микропроцессора на основе нечеткой логики, способного автоматически решать известную «задачу о собаке, догоняющей кота». В 1990 г. Комитет по контролю экспорта США внес нечеткую логику в список критически важных оборонных технологий, не подлежащих экспорту потенциальному противнику. В бизнесе и финансах нечеткая логика получила признание после того, как в 1988 году экспертная система на основе нечетких правил для прогнозирования финансовых индикаторов единственная предсказала биржевой крах. И количество успешных фаззи-применений в настоящее время исчисляется тысячами. В Японии это направление переживает настоящий бум. Здесь функционирует специально созданная организация – Laboratory for International Fuzzy Engineering Research. Программой этой организации является создание более близких человеку вычислительных устройств. Информационные системы, базирующиеся на нечетких множествах и нечеткой логике, называют нечеткими системами. Достоинства нечетких систем: l l l l l
l l l
Понятие нечеткого множества - эта попытка математической формализации нечеткой информации для построения математических моделей. В основе этого понятия лежит представление о том, что составляющие данное множество элементы, обладающие общим свойством, могут обладать этим свойством в различной степени и, следовательно, принадлежать к данному множеству с различной степенью. При таком подходе высказывания типа “такой-то элемент принадлежит данному множеству” теряют смысл, поскольку необходимо указать “насколько сильно” или с какой степенью конкретный элемент удовлетворяет свойствам данного множества.
Компьютерно-ориентированная реализация принципа нечеткого обобщения Заде осуществляется по следующему алгоритму. 1. Зафиксировать значение 2. Найти все n-ки 3. Степень принадлежности элемента нечеткому числу вычислить по формуле: 4. Если взяты все элементы то конец, если нет, то зафиксировать новое значение и вернуться к шагу 2. Для вычисления значений функции нечеткие аргументы представляют в виде: Количество k выбирают так, чтобы обеспечить требуемую точность вычислений. На выходе алгоритма получается нечеткое множество. Более практичным является уровневый принцип обобщения. В этом случае четкие числа задают множествами : где - минимальное и максимальное значение. Применение уровневого принципа обобщения сводится к решению для каждого уровня следующей задачи оптимизации: найти максимамльное и минимальное значение функции при условии, что аргументы могут принимать значения из соответствующих сечений. Количество уровней выбирается так, чтобы обеспечить необходимую точность вычислений.
|