Решения задач линейного программирования
Решить задачу линейного программирования графическим методом (найти и наибольшее и наименьшее значение функции).
1. F (x)= 3 x 1+6 x 2® extr; x 1 + 2 x 2 ≥ 6, 7 x 1 + 9 x 2 ≤ 63, 3 x 1─ x 2 ≥ 0, x 1 ≤ 7, x 1 ≥ 0, x 2 ≥ 0.
2. F (x)= ─2 x 1─2 x 2® extr; x 1 + 8 x 2 ≥ 8, x 1 + x 2 ≤ 9, ─2 x 1 +3 x 2 ≤ 7, x 2 ≤ 4, x 1 ≥ 0, x 2 ≥ 0.
3. F (x)= 9 x 1─3 x 2® extr; 5 x 1 ─ x 2 ≥ 0, x 1 ─ 3 x 2 ≤ 0, 6 x 1 +11 x 2 ≤ 60, x2 ≤ 5, x 1 ≥ 0, x 2 ≥ 0.
4. F (x)= 3 x 1+ 5.5 x 2® extr; 3 x 1 + x 2 ≥ 5, 3 x 1 ─ x 2 ≥ 0, x 1 ─ 4 x 2 ≤ 0, x 1 ≤ 3, x 1 ≥ 0, x 2 ≥ 0.
5. F (x)= ─2 x 1+ 12 x 2® extr; 6 x 1 + 9 x 2 ≥ 27, 3 x 1 ─ 2 x 2 ≥ ─10, x 1 + x 2 ≤ 8, x 1 ─ 6 x 2 ≤ 0, x 1 ≥ 0, x 2 ≥ 0.
6. F (x)= ─2 x 1+ 2 x 2® extr; x 1 ─ x 2 ≤ 0, 3 x 1 + 2 x 2 ≤ 20, 3 x 1 + x 2≥ 3, x 1 ≤ 3, x 1 ≥ 0, x 2 ≥ 0.
7. F (x)= 3 x 1 + 4.5 x 2® extr; ─ x 1+ x 2 ≤ 3, x 1 + 4 x 2 ≥ 7, 2 x 1 +3 x 2 ≤ 20, x 2 ≤ 8, x 1 ≥ 0, x 2 ≥ 0.
8. F (x)= ─2 x 1+ 1.5 x 2® extr; x 1 ─ 4 x 2 ≤ 0, x 1 + x 2 ≤ 7, 4 x 1─ 3 x 2 ≥ ─ 12, x 2 ≤ 5, x 1 ≥ 0, x 2 ≥ 0.
9. F (x)= ─ x 1+ 0.5 x 2® extr; 2 x 1 ─ 3 x 2 ≤ 6, x 1+ 3 x 2 ≥ 3, 2 x 1─ x 2 ≥ 0, x 1 ≤ 4, x 1 ≥ 0, x 2 ≥ 0.
10. F (x)= 10 x 1+ 5 x 2® extr; ─7 x 1 + 2 x 2 ≤ 14, 2 x 1 + x 2 ≤ 10, 3 x 1+ 5 x 2 ≥ 15, x 2 ≤ 8, x 1 ≥ 0, x 2 ≥ 0.
11. F (x)= ─4 x 1+ 4 x 2® extr; 3 x 1 ─ x 2 ≥ 0, x 1 ─ x 2 ≤ 3, 5 x 1+ 2 x 2 ≤ 20, x 2 ≤ 4, x 1 ≥ 0, x 2 ≥ 0.
12. F (x)= ─2 x 1─1,5 x 2 ® extr; 4 x 1 + 3 x 2 ≤ 24, x 1 ─ x 2 ≥─ 4, x 1 ─ x 2 ≤ 0, x 2 ≤ 5, x 1 ≥ 0, x 2 ≥ 0.
13. F (x)= ─10 x 1+ 2 x 2® extr; ─ x 1 +2 x 2 ≥ ─2, 5 x 1 ─ x 2 ≥ ─ 5, 2 x 1 + x 2 ≤ 8, x 1+ x 2 ≥ 2, x 1 ≥ 0, x 2 ≥ 0.
14. F (x)= ─2 x 1+ 16 x 2® extr; 3 x 1 ─ 2 x 2 ≥ ─ 6, x 1 ─ 8 x 2 ≤ 0, 2 x 1+ x 2 ≥ 2, x 1 ≤ 3, x 1 ≥ 0, x 2 ≥ 0.
15. F (x)= 4 x 1+ 4 x 2® extr; x 1 + x 2 ≥ 4, 7 x 1 + x 2 ≥ 7, x 1+ 5 x 2 ≥ 10, 3 x 1 + x 2 ≤ 15, x 1 ≥ 0, x 2 ≥ 0.
16. F (x)= ─15 x 1+ 20 x 2® extr; 3 x 1 ─ 4 x 2 ≥ ─12, 5 x 1 ─ 4 x 2 ≤ 25, 3 x 1+ x2 ≥ 3, x 1 + x 2 ≤ 10, x 1 ≥ 0, x 2 ≥ 0.
17. F (x)= x 1+ 1.5 x 2® extr; x 1 ─ 3 x 2 ≤ 0, 2 x 1 + 3 x 2 ≤ 30, 4 x 1 + x 2 ≥ 4, x 2 ≤ 8, x 1 ≥ 0, x 2 ≥ 0.
18. F (x)= ─12 x 1+ 3 x 2® extr; 7 x 1 +3 x 2 ≥ 21, 7 x 1 + 6 x 2 ≤ 42, 4 x 1─ x 2 ≥ 0, x1 ≤ 6, x 1 ≥ 0, x 2 ≥ 0.
19. F (x)= ─14 x 1+ 2 x 2® extr; ─ x 1 + x 2 ≥ ─3, 7 x 1─ x 2 ≥ 0, 3 x 1 +2 x 2 ≥ 6, 5 x 1 + x 2 ≤ 15, x 1 ≥ 0, x 2 ≥ 0.
20. F (x)= ─2 x 1+ 8 x 2® extr; 3 x 1 + x 2 ≥ 5, 3 x 1─ x 2 ≥ 0, x 1 ─ 4 x 2 ≤ 0, x 1 ≤ 3, x 1 ≥ 0, x 2 ≥ 0.
21. F (x)= ─3 x 1─ 4 x 2® extr; 2 x 1 + 5 x 2 ≥ 12, 4 x 1 ─ 3 x 2 ≥ ─12, 3 x 1 + 4 x 2 ≤ 24, x 1 ≤ 7, x 1 ≥ 0, x 2 ≥ 0.
22. F (x)= ─3 x 1+12 x 2® extr; 4 x 1 + 5 x 2 ≤ 50, 3 x 1 + x 2 ≥ 3, x 1 ─ 4 x 2 ≤ 0, x 2 ≤ 5, x 1 ≥ 0, x 2 ≥ 0.
23. F (x)= ─3 x 1+ x 2® extr; 3 x 1─ x 2 ≥ 0, x 1 +3 x 2 ≥ 3, ─ x 1 +5 x 2 ≥ ─5, 3 x 1 +7 x 2 ≤ 21, x 1 ≥ 0, x 2 ≥ 0. 24. F (x)= ─1.5 x 1+ x 2® extr; x 1 + x 2 ≤ 5, 3 x 1 ─ 2 x 2 ≥ ─ 6, x 1 ─ 3 x 2 ≤ 0, x 2 ≤ 4, x 1 ≥ 0, x 2 ≥ 0.
25. F (x)= 3 x 1─ 6 x 2® extr; x 1 ─ x 2 ≤ 2, ─ x 1 + 2 x 2 ≤ 4, 5 x 1─ x 2 ≥ 0, x 1 ≤ 5, x 1 ≥ 0, x 2 ≥ 0.
26. F (x)= ─2 x 1+6 x 2® extr; 4 x 1 + x 2 ≥ 5, 4 x 1─ x 2 ≥ 0, x 1─ 3 x 2 ≤ 6, 3 x 1 + 4 x 2 ≤ 24, x 1 ≥ 0, x 2 ≥ 0.
27. F (x)= 4 x 1─ 4 x 2® extr; ─ x 1 + x 2 ≥ ─3, x 1 ─ 7 x 2 ≤ 0, x 1 + x 2 ≤ 6, ─5 x 1 + 2 x 2 ≤ 5, x 1 ≥ 0, x 2 ≥ 0.
28. F (x)= ─10 x 1─ 8 x 2® extr; ─ x 1 + 2 x 2 ≤ 4, x 1 + 3 x 2 ≥ 3, 5 x 1 + 8 x 2 ≤ 40, x 2 ≤ 5, x 1 ≥ 0, x 2 ≥ 0.
29. F (x)= 3 x 1─ 1.5 x 2® extr; 2 x 1 ─ x 2 ≥ ─4, 3 x 1 + x 2 ≥ 3, x 1 ─ 2 x 2 ≤ 5, 4 x 1 +5 x 2 ≤ 32, x 1 ≥ 0, x 2 ≥ 0.
30. F (x)= ─ 4 x 1+ 2 x 2® extr; 2 x 1 ─ x 2 ≥ 0, 6 x 1 + x 2 ≥ 6, x 1─ 2 x 2 ≤2, x 1 ≤ 6, x 1 ≥ 0, x 2 ≥ 0
|