Студопедия — Строение и происхождение биосферы. Учение В.И.Вернадского о биосфере
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Строение и происхождение биосферы. Учение В.И.Вернадского о биосфере







Содержание понятия биосферы не всегда было однозначным. Первоначально биосферами называли гипотетические глобулы (видимо под влиянием идей французских учёных XVIII века П. Л. Мопертюи и особенно Ж. Л. Бюффона о бессмертных органических молекулах), якобы составляющие живую основу всех организмов. Такое понимание продержалось во Франции до середины века.

Понятие «биосфера». Термин «биосфера» в научную литературу введен в 1875 г. австрийским ученым-геологом Эдуардом Зюссом. К биосфере он отнес все то пространство атмосферы, гидросферы и литосферы (твердой оболочки Земли), где встречаются живые организмы.

Владимир Иванович Вернадский (1863-1945) использовал этот термин и создал науку с аналогичным названием. Если с понятием «биосфера», по Зюссу, связывалось только наличие в трех сферах земной оболочки (твердой, жидкой и газообразной) живых организмов, то, по В. И. Вернадскому, им отводится роль главнейшей геохимической силы. При этом в понятие биосферы включается преобразующая деятельность организмов не только в границах распространения жизни в настоящее время, но и в прошлом. В таком случае под биосферой понимается все пространство (оболочка Земли), где существует или когда-либо существовала жизнь, то есть где встречаются живые организмы или продукты их жизнедеятельности. В. И. Вернадский не только сконкретизировал и очертил границы жизни в биосфере, но, самое главное, всесторонне раскрыл роль живых организмов в процессах планетарного масштаба. Он показал, что в природе нет более мощной геологической (средообразующей) силы, чем живые организмы и продукты их жизнедеятельности.

Учение В. И. Вернадского о биосфере произвело переворот во взглядах на глобальные природные явления, в том числе геологические процессы, причины явлений, их эволюцию. До трудов В. И. Вернадского эти процессы прежде всего связывались с действием физико-химических сил, объединяемых термином «выветривание». В. И. Вернадский показал первостепенную преобразующую роль живых организмов и обусловливаемых ими механизмов образования и разрушения геологических структур, круговорота веществ, изменения твердой (литосферы), водной (гидросферы) и воздушной (атмосферы) оболочек Земли.

Ту часть биосферы, где живые организмы встречаются в настоящее время, обычно называют современной биосферой, или необиосферой, а древние биосферы относят к палеобиосферам, или белым биосферам. В качестве примеров последних можно назвать безжизненные скопления органических веществ (залежи каменных углей, нефти, горючих сланцев и т. п.) или запасы других соединений, образовавшихся при участии живых организмов (известь, мел, соединения кремния, рудные образования и т. п.).

Границы биосферы. По современным представлениям необиосфера в атмосфере простирается примерно до озонового экрана (у полюсов 8-10 км, у экватора - 17-18 км и над остальной поверхностью Земли - 20-25 км). За пределами озонового слоя жизнь невозможна вследствие наличия губительных космических ультрафиолетовых лучей. Гидросфера практически вся, в том числе и самая глубокая впадина (Марианская) Мирового океана (11022 м), занята жизнью. К необиосфере следует относить также и донные отложения, где возможно существование живых организмов. В литосферу жизнь проникает на несколько метров, ограничиваясь в основном почвенным слоем, но по отдельным трещинам и пещерам она распространяется на сотни метров.

Границы палеобиосферы в атмосфере примерно совпадают с необиосферой, под водами к палеобиосфере следует отнести и осадочные породы, которые, по В. И. Вернадскому, практически все претерпели переработку живыми организмами. Это толща от сотен метров до десятков километров. Сказанное относительно осадочных пород применимо и к литосфере, пережившей водную стадию функционирования.

Таким образом, границы биосферы определяются наличием живых организмов или «следами» их жизнедеятельности. В пределах современной, как и былых биосфер, насыщенность жизнью между тем далеко не равномерна. На границах биосферы встречаются лишь случайно занесенные организмы («поле устойчивости жизни», по В. И. Вернадскому). В пределах основной части биосферы организмы присутствуют постоянно («поле существования жизни»), но распределены далеко не равномерно. Очаги повышенной и максимальной концентрации жизни В. И. Вернадский называл пленками и сгущениями жизни. Эти наиболее продуктивные экосистемы являются своего рода каркасом биосферы и требуют повышенного внимания человека.

Вернадский предложил все, что входит в состав биосферы, объединить в группы в зависимости от характера происхождения вещества. Он выделял семь групп вещества:

1) живое вещество - это совокупность всех продуцентов, консументов и редуцентов, населяющих биосферу;

2) косное вещество - это совокупность веществ, в образовании которых живые организмы не участвовали, это вещество образовалось до появления жизни на Земле (горные, скалистые породы, вулканические извержения);

3) биогенное вещество - это совокупность веществ, которые образованы самими организмами или являются продуктами их жизнедеятельности (каменный уголь, нефть, известняк, торф и другие полезные ископаемые);

4) биокосное вещество - это вещество, которое представляет собой систему динамического равновесия между живым и косным веществом (почва, кора выветривания);

5) радиоактивное вещество - это совокупность всех изотопных элементов, находящихся в состоянии радиоактивного распада;

6) вещество рассеянных атомов - это совокупность всех элементов, находящихся в атомарном состоянии и не входящих в состав никакого другого вещества;

7) космическое вещество -это совокупность веществ, попадающих в биосферу из космоса и имеющих космическое происхождение (метеориты, космическая пыль).

Вернадский считал, что главную преобразующую роль в биосфере играет живое вещество. Оно выполняет 9 основных биосферных функций

Биосферу как место современного обитания организмов вместе с самими организмами можно разделить на три подсферы (рис. 2.): аэробиосферу, населенную аэробионтами, субстратом жизни которых служит влага воздуха; гидробиосферу — глобальный мир воды (водная оболочка Земли без подземных вод), населенный гидробионтами; геобиосферу — верхнюю часть земной коры (литосфера), населенную геобионтами.

Гидробиосфера распадается на мир континентальных, главным образом пресных, вод — аквабиосферу (с аквабионтами) и область морей и океанов — маринобиосферу (с маринобионтами).

Рис. 2. Иерархия экосистем биосферы (по Н. Ф. Реймерсу, 1994)


Геобиосфера состоит: из области жизни на поверхности суши — террабиосферы (с террабионтами), которая подразделяется на фитосферу (от поверхности земли до верхушек деревьев) и педосферу (почвы и лежащие под ними подпочвы, нередко сюда включают всю кору выветривания) с педобионтами; узлитобиосферы — жизни в глубинах Земли (с литобионтами, живущими в порах горных пород).

Литобиосфера распадается на два слоя: гипотеррабиосферу — слой, где возможна жизнь аэробов (или подтеррабиосфера) и теллуробиосферу — слой, где возможно обитание анаэробов (или глубинобиосфера). Жизнь в толще литосферы существует в основном в подземных водах.

Подобные слои существуют и в гидробиосфере, но они связаны главным образом с интенсивностью света. Выделяют три слоя: фотосферу —относительно ярко освещенный, дисфотосферу — всегда очень сумеречный (до 1% солнечной инсоляции), афотосферу — абсолютной темноты, где невозможен фотосинтез.

Лимитирующим фактором развития жизни в аэробиосфере служит наличие капель воды и положительных температур, а также твердых аэрозолей, поднимающихся с поверхности Земли. От вершин деревьев до высоты наиболее частого расположения кучевых облаков простирается тропобиосфера (с тропобионтами). Пространство — это более тонкий слой, чем атмосферная тропосфера. Выше тропобиосферы лежит слой крайне разряженной микробиоты — альтобиосфера (с альтобионтами). Над ней простирается пространство, куда жизнь проникает лишь случайно и не часто, где организмы не размножаются, — парабиосфера.

На больших высотах в горах, там, где уже невозможна жизнь высших растений и вообще организмов-продуцентов, но куда ветры приносят с более низких вертикальных поясов органическое вещество и где при отрицательных температурах воздуха еще достаточно тепла от прямой солнечной инсоляции для существования жизни, расположена высотная часть террабиосферыэоловая зона. Это царство членистоногих и некоторых микроорганизмов — эолобионтов. Жизнь в океанах достигает их дна. Под ним, в базальтах, она едва ли возможна. В глубинах литосферы есть два теоретических уровня распространения жизни — изотерма 100°С, ниже которой при нормальном атмосферном давлении вода кипит, а белки свертываются, и изотерма 460°С, где при любом давлении вода превращается в пар, т. е. в жидком состоянии быть не может. Жизнь в глубинах Земли фактически не идет дальше 3—4 км, максимум 6—7 км и лишь случайно в неактивных формах может проникнуть глубже — в гипобиосферу («под-биосфера» — аналог парабиосферы в атмосфере). Следует отметить, что здесь, где залегают биогенные породы, образно выражаясь, следы былых сфер, расположена метабиосфера. Метабиосфера, начинаясь с поверхности Земли, простирается далеко в глубь литосферы, теряясь там, где процессы метаморфоза горных пород стирают признаки жизни.

Между верхней границей гипобиосферы и нижней парабиосферы лежит собственно биосфера — эубиосфера. Ее наиболее насыщенный жизнью слой называют биофильм ом, или, по В. И. Вернадскому (1926), «пленкой жизни ».

Выше парабиосферы расположена апобиосфера, или «надбиосфера», где сравнительно обильны биогенные вещества (ее верхняя граница трудноуловима). Под метабиосферой расположена абиосфера («небиосфера»).

Весь слой нынешнего или прошлого воздействия жизни на природу Земли называют мегабиосферой, а вместе с артебиосферой (пространством человеческой экспансии в околоземной космос) — панбиосферой.

Таким образом, «поле существования жизни», особенно активной, по новейшим данным, ограничено в вертикальном пределе высотой около 6 км над уровнем моря, до которой сохраняются положительные температуры в атмосфере и могут жить хлорофилло-носные растения (6,2 км в Гималаях). Выше, в эоловой зоне, обитают лишь жуки, ногохвостки и некоторые клещи, питающиеся зернами растительной пыльцы, спорами растений, микроорганизмами и другими органическими частицами, заносимыми ветром и т. д. Еще выше живые организмы попадают лишь случайно (микроорганизмы могут сохранять жизнь в виде спор). Нижний предел существования активной жизни традиционно ограничивают дном океана и изотермой 100° С в литосфере, расположенными соответственно на отметках около 11 км и, по данным сверхглубокого бурения на Кольском полуострове, около б км. Фактически жизнь в литосфере распространена до глубины 3—4 км. Таким образом, вертикальная мощность биосферы в океанической области Земли достигает более 17 км, в сухопутной — 12 км.

Парабиосфера еще более асимметрична, поскольку верхнюю ее границу определяет озоновый экран. Более значительны колебания толщи мегабиосферы, охватывающей осадочные породы, но она не опускается на материках глубже отметок самых больших глубин океана, т. е. 11 км (здесь температура достигает 200°С), и не поднимается выше наибольших плотностей озонного экрана (22—24 км), следовательно, ее максимальная толщина 33—35км.

Теоретически пределы биосферы шире, поскольку в гидротермах дна океана (их назвали «черными курильщиками» из-за темного цвета извергающихся вод) на глубинах около 3 км обнаружены организмы при температуре до 250°С.

Организованность биосферы – явление многоплановое. В самом крупном плане биосфера представляет собой единство живого и минеральных элементов, вовлечённых в сферу жизни. Существенная составная часть единства – биотический круговорот, основанный на взаимодействии организмов, создающих и разрушающих органическое вещество.

При более детальном рассмотрении нетрудно обнаружить гетерогенность биотического круговорота, его более древнюю часть, составленную из одноклеточных синтетиков и деструкторов, и относительно позднюю надстройку из многоклеточных организмов.

Ещё более внимательный анализ показывает, что биосфера распределена по поверхности Земли неравномерно. В различных природных условиях она сформирована в виде относительно самостоятельных природных комплексов, получивших название экосистем, или биогеоценозов. Понятие «биогеоценоз» введено в науку советским ботаником Академиком В. Н. Сукачевым и означает сообщество организмов разных видов, обитающее в определённых природных условиях.

Каждый биогеоценоз, или экосистема, представляет собой своеобразную модель биосферы в миниатюре. Он, как правило, включает фотосинтетиков – хлорофиллоносные растения, создающие органическое вещество, гетеротрофов, живущих на созданной автотрофами органике, деструкторов, разрушающих органическое вещество тел растений и животных до минеральных элементов, а также субстрат с каким-то запасом минеральных элементов.

В зависимости особенностей субстрата, климата, исторических факторов формирования жизни биогеоценозы могут весьма существенно различаться. Известный американский эколог Е. Одум (1968), говоря об основных экосистемах мира, называет следующие экосистемы: моря, эстуарии и морские побережья, ручьи и реки, озёра и пруды, пресноводные болота, пустыни тундры, травянистые ландшафты, леса.

Каждая из перечисленных Одумом крупных экосистем, характеризующаяся некоторыми специфическими особенностями, в свою очередь распадается на экосистемы, или биогеоценозы различных лесов - хвойных, лиственных, тропических, каждый из которых отличается своими особями чертами и прежде всего характерным круговоротом вещества. Точно так же экосистема моря включает в свой состав биогеоценозы коралловых островов, весьма богатых жизнью.

Один из основателей экологии как самостоятельной науки, известный английский учёный Ч. Элтон (1960), обращает внимание на то, что разные биогеоценозы насыщены жизнью в разной степени. Как правило, бедны разнообразием видов организмов биогеоценозы Крайнего Севера, пустынь, особенно богаты видами биогеоценозы дождевых тропических лесов. Величина первичной продукции органического вещества в биогеоценозах, наиболее богатых жизнью, превосходит продукцию биогеоценозов глубин океана более чем в 50 раз!

Живая часть биогеоценоза – биоценоз – слагается из популяций организмов, принадлежащих к разным видам. В распределении видов в составе биоценоза обнаруживаются интересные закономерности. Чем меньше вес организма, тем больше численность его особей (Э. Макфельден, 1965).

Изучение частоты встречаемости представителей разных видов позволяет обнаружить другую более важную закономерность: Наибольшим распространением отличается сравнительно небольшое число видов. Так, например, по данным Э. Райса (1952), изучившего видовую структуру растительности высокотравной Оклахомы, 84 % травостоя было занято 9 видами, в то время как на долю остальных 20 видов приходилось 16 %.

В состав биоценозов входят, с одной стороны, высокоспециализированные виды, способные существовать только в условиях данного биоценоза, с другой – виды с более широким спектром потребностей. При существенных изменениях среды обитания первыми вымирают специализированные виды.

Во многих биоценозах наряду с видами, встречающимися в данном сообществе постоянно, имеются виды, входящие в состав либо на какой-то стадии развития, либо в течение ограниченного сезона. К первым принадлежат многие водные насекомые, живущие в водоёме на личиночной стадии и покидающие это местообитание во взрослом состоянии, например комары. Большую роль играют отношения типа паразит – хозяин. В последнее время открыта принципиально новая форма связей – передача наследственных особенностей от одних видов к другим с помощью бактериофагов и вирусов. Такая форма связи, по-видимому, широко распространена среди бактерий. Какую она играет роль во взаимодействии между другими членами биоценоза, пока ещё не достаточно ясно.

Анализ структуры биосферы не заканчивается на биогеоценозах. Они, в свою очередь, состоят из популяций разнообразных видов, т.е. из качественно своеобразных форм организации живой материи, каждая из которых ведёт своё начало от общего предка. В биогеоценозе, таким образом, существуют популяции видов с разной историей; основа биогеоценоза полифилетчина.

В организации биосферы как системы биогеоценозов снова находит своё выражение общий принцип формирования сложного из относительно простого:


  1. Имеется масса специфических компонентов – популяции отдельных видов.

  2. Различные виды организмов не только способны образовывать связи друг с другом, они уже не могут существовать без этих связей.

  3. Связи между организмами обеспечиваются в основном одним источником энергии – солнечным излучением. Каждый биогеоценоз – своеобразный трансформатор солнечной энергии в энергию биосинтезов.

  4. Принцип разделения труда, достаточно хорошо выраженный в биогеоценозах, придаёт им черты целостности, относительной независимости существования и, как следствие этого, большей устойчивости.

  5. Относительная независимость биоценозов друг от друга при условии конкуренции между ними за местообитание, вещество и энергию создаёт оптимальные условия для эволюций всей биосферы.


Э. И. Колчинский (1988) в эволюции биосферы выделяет следующие тенденции: постепенное увеличение общей ее биомассы и продуктивности; прогрессивное накопление аккумулированной солнечной энергии в поверхностных оболочках Земли; увеличение информационной емкости биосферы, проявляющейся в нарастающем росте органических форм, увеличении числа геохимических барьеров и возрастании дифференцированности физико-географической структуры биосферы; усиление некоторых биогеохимических функций живого вещества и появление новых функций; усиление преобразующего воздействия жизни на атмосферу, гидросферу, литосферу и увеличение роли живого вещества, продуктов его жизнедеятельности в геологических, геохимических и физико-географических процессах; расширение сферы действия биологического (биотического) круговорота и усложнение его структуры. Несомненно, к этому перечню необходимо отнести трансформирующее воздействие на биосферу человеческой деятельности, не исключая нисходящую ветвь эволюции биосферы — все эволюционирующие системы не являются бессмертными, а имеют «начало» и «конец» своего существования.

развитие биосферы носило необратимый характер. В первую очередь это касается живого вещества, для которого необратимость развития стала ясной после работ Ч. Дарвина (1859). Основываясь на эволюционном учении и палеонтологических данных, знаменитый бельгийский палеонтолог Л. Долло (1857—1931) в короткой заметке «Законы эволюции» сформулировал закон необратимости эволюции: «Организм не может вернуться, хотя бы частично, к предшествующему состоянию, которое было уже осуществлено в ряде его предков».

В течение истории Земли необратимость биологической эволюции определила необратимость динамики веществ в биосфере, выявляемых по характеру древних осадков.

Б. Коммонер (1974) выдвинул ряд положений, которые сегодня называют законами экологии:

1) все связано со всем;

2) все должно куда-то деваться;

3) природа «знает» лучше;

4) ничто не дается даром.

Первый закон «Все связано со всем» отражает существование сложнейшей сети взаимодействий в экосфере. Он предостерегает человека от необдуманного воздействия на отдельные части экосистем, что может привести к непредвиденным последствиям.

Второй закон «Все должно куда-то деваться» вытекает из фундаментального закона сохранения материи. Он позволяет по-новому рассматривать проблему отходов материального производства. Огромные количества веществ извлечены из Земли, преобразованы в новые соединения и рассеяны в окружающей среде без учета того факта, что «все куда-то девается». И как результат — большие количества веществ зачастую накапливаются там, где по природе их не должно быть.

Третий закон «Природа знает лучше» исходит из того, что «структура организма нынешних живых существ или организмов современной природной экосистемы — наилучшие в том смысле, что они были тщательно отобраны из неудачных вариантов и что любой новый вариант, скорее всего, будет хуже существующего ныне». Этот закон призывает к тщательному изучению естественных био- и экосистем, сознательному отношению к преобразующей деятельности. Без точного знания последствий преобразования природы недопустимы никакие ее «улучшения».

Четвертый закон «Ничто не дается даром», по мнению Б. Коммонера, объединяет предшествующие три закона, потому что биосфера как глобальная экосистема представляет собой единое целое, в рамках которой ничего не может быть выиграно или потеряно и которая не может являться объектом всеобщего улучшения; все, что было извлечено из нее человеческим трудом, должно быть возмещено. Платежа по этому векселю нельзя избежать; он может быть только отсрочен.

В законах Б. Коммонера обращается внимание на всеобщую связь процессов и явлений в природе: любая природная система может развиваться только за счет использования материально-энергетических и информационных возможностей окружающей ее среды. Пока мы не имеем абсолютно достоверной информации о механизмах и функциях природы, мы, подобно человеку, не знакомому с устройством часов, но желающему их починить, легко вредим природным системам, пытаясь их улучшить. Иллюстрацией здесь может служить то, что один лишь математический расчет параметров биосферы требует безмерно большего времени, чем весь период существования нашей планеты как твердого тела.

Эволюционные переходы в биосфере занимают относительно небольшое время. Правила усиления интеграции биологических систем И. И. Шмалъгаузена гласят, что в процессе эволюции биологические системы становятся все более интегрированными, со все более развитыми регуляторными механизмами, обеспечивающими такую интеграцию. Н. Ф. Реймерс в работе «Системные основы природопользования» указывал на то, что разрушение более трех уровней иерархии экосистем абсолютно необратимо и катастрофично. Для поддержания надежности биосферы обязательна множественность конкурентно взаимодействующих экосистем. Таким путем шла эволюция биосферы. Антропогенные же воздействия нарушают этот ход. Правило множественности экосистем вытекает и из правила экологического дублирования, и вообще из теории надежности. Здесь интеграция оказывается «скользящей» по иерархической лестнице экосистем.

В.И. Вернадский кладет в основу своей теории монолита жизни принцип вечности жизни (все живое из живого) и говорит о невозможности самозарождения. В.И. Вернадский провел глубокий анализ проблемы происхождения жизни. Его теоретические положения основываются на бесспорных непротиворечивых тезисах — эмпирических обобщениях, которые вытекают из многократно доказанных фактов, не подлежащих сомнению, и могут быть сведены к следующему.


  • Начала жизни в том космосе, который мы наблюдаем, не было, поскольку не было начала этого космоса. Жизнь вечна, поскольку вечен космос, и всегда передавалась путем биогенеза.

  • Жизнь, извечно присущая Вселенной, явилась новой на Земле, ее зародыши приносились извне постоянно, но укрепились на Земле лишь при благоприятных для этого возможностях.

  • Жизнь на Земле была всегда. Время существования планеты — это лишь время существования на ней жизни. Жизнь геологически (планетарно) вечна. Возраст планеты неопределим.

  • Жизнь никогда не была чем-то случайным, ютящимся в каких-то отдельных оазисах. Она была распространена всюду и всегда живое вещество существовало в образе биосферы.

  • Древнейшие формы жизни — дробянки — способны выполнять все функции в биосфере. Значит, возможна биосфера, состоящая из одних прокариот. Вероятно, что такова она и была в прошлом.

  • Живое вещество не могло произойти от косного. Между этими двумя состояниями материи нет никаких промежуточных ступеней. Напротив, в результате воздействия жизни происходила эволюция земной коры.


Выводы парадоксальные. Они противоречат традиционному миропониманию и находятся в стороне от господствующей научной парадигмы о последовательном образовании Земли как космического тела, затем появлении на ней жизни с последующим образованием биосферы.

Теоретические положения В.И. Вернадского основываются на шести эмпирических обобщениях, с которых начинается его «Биосфера»:


  • никогда не наблюдалось в условиях Земли зарождение живого от неживого;

  • в геологической истории нет эпох, в которые отсутствовала бы жизнь;

  • современное живое вещество генетически родственно всем прошлым организмам;

  • в современную эпоху живое вещество так же влияет на химический состав земной коры, как и в прошлые эпохи;

  • существует константное количество атомов, захваченных в данный момент живым веществом;

  • энергия живого вещества есть преобразованная, аккумулированная энергия Солнца.


Очень важным представляется второе эмпирическое обобщение: в земной коре нельзя отыскать слоев, свободных от влияния живого вещества. Именно отсюда вытекает парадокс о невозможности измерения возраста Земли как космического тела, ибо мы будем находить в конце наших усилий только структуры, переработанные живым веществом. Анализ древнейших отложений земной коры — архейских пород — показал, что это измененные осадочные породы, отлагавшиеся в среде, где уже существовала жизнь.

Теоретический тезис В.И. Вернадского о всегдашней «оживленности» поверхности планеты напоминает Лаелевский принцип актуализма: Земля была «оживлена» всегда и всегда жизнь существовала в форме биосферы. Древнейшие живые организмы — дробянки, несмотря на примитивное строение, способны выполнять все функции живого вещества. Они настолько вездесущи, что «встроены» почти в каждую химическую реакцию, происходящую на поверхности (в почве и коре выветривания), в недрах, в горячих источниках, в воде, в вулканических выбросах. А поскольку скорость деления прокариот огромна, то и плоды их биохимической работы ошеломляющи (например, запасы руд Курской магнитной аномалии). Значит, в принципе возможна биосфера, состоящая из одних прокариот. И вполне возможно, что такова она и была в прошлом. Прокариоты символизируют собой некий особый путь эволюции, где организм нельзя рассматривать отдельно от среды, так как они изменяют ее своей жизнедеятельностью.

Идея о «всегдашней оживленности планеты» связана с идеей о «всюдности жизни». Жизнь не могла возникнуть только в каких-то отдельных оазисах (вулканических областях, морских лагунах, в океанических глубинах). Это противоречит расчетам, сделанным В.И. Вернадским о скорости захвата организмами пространства: для бактерий она сравнима со скоростью звука в воздушной среде. Известно, что они способны нарастить массу, равную по весу земному шару, за несколько суток.

Таким образом Вернадский оспаривает лишь версию самозарождения жизни на Земле из неорганических веществ и линейный уровень развития живых организмов.







Дата добавления: 2015-06-15; просмотров: 2143. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия