Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Круговорот веществ в экосистеме





Благодаря пищевым цепям, в экосистеме, наряду с перемещением энергии, происходит и транспортировка различных химических элементов. Как и в случае с энергетическими потоками, движущей силой круговорота веществ служит солнечная энергия. Это связано с тем, что в биомассе организмов происходит накопление тех или иных химических веществ, а, значит, при переходе энергии по пищевым цепям также осуществляется и передача веществ, содержащихся в биомассе. Поток веществ сопровождает собой поток энергии в экосистеме, который, в свою очередь, берет начало от энергии солнечного света. Круговорот химических веществ обусловлен также влиянием абиотических составляющих экосистемы (например, климатическим фактором), а также активной хозяйственной деятельностью человека. Потоки веществ в экосистеме объединены понятием биогеохимический круговорот. Биогеохимический круговорот — циркуляция в биосфере химических элементов и неорганических соединений по характерным путям из внешней среды в организмы и из организмов во внешнюю среду. Химические элементы, участвующие в круговороте, не бывают равномерно распределены по всей экосистеме. Кроме того, они могут находиться в различных химических формах. Поэтому, при изучении биогеохимических циклов следует выделить две части. 1) Резервный фонд — большая масса медленно движущихся веществ, в основном не связанных с организмами. Он сосредоточен в земной коре, атмосфере и гидросфере. Перемещение веществ в резервном фонде происходит благодаря влиянию абиотических факторов экосистемы. 2) Обменный фонд. Он представляет собой неорганические вещества, содержащиеся в живых организмах. Для него характерно быстрое перемещение химических элементов между органической и неорганической средами. По своей природе биогеохимические циклы также подразделяются на две категории. Первая из них — круговорот газообразных веществ с резервным фондом в атмосфере или гидросфере. Другая же представляет собой осадочный цикл (т.е. круговорот твердых веществ) с резервным фондом в земной коре. Круговорот газообразных веществ отличает его способность к поддержанию определенных концентраций тех или иных газов, причем концентрации будут примерно одинаковыми во всех точках атмосферы и гидросферы. В осадочных циклах скорость потока веществ намного ниже, чем в газообразном круговороте, так как основная масса их сосредоточена в земной коре, отличающейся своей малоподвижностью и малоактивностью. Из-за этого, способность к саморегуляции в осадочном круговороте не так велика, как в случае с циркуляцией газообразных веществ. При изображении биогеохимических циклов отдельных веществ акцент делается на обмене между организмами и резервным фондом, а также на путях движения веществ внутри экосистемы. В связи с этим, любую экосистему можно представить в виде ряда блоков, через которые проходят различные вещества, и в которых данные вещества могут оставаться на протяжении различных периодов времени. В круговоротах минеральных веществ в экосистеме обычно участвуют три блока: живые организмы, мертвый органический детрит и доступные неорганические вещества. В качестве примеров биогеохимических циклов можно рассмотреть круговороты азота, фосфора и серы. Концентрация азота и фосфора в экосистеме часто напрямую влияют на численность организмов в экосистеме (т.е. являются лимитирующими факторами), а круговорот серы может служить наглядной иллюстрацией связей, сложившихся между атмосферой, гидросферой и земной корой. Резервный фонд круговорота азота сосредоточен в атмосфере. Атмосферный азот, благодаря деятельности азотофиксирующих бактерий, а также посредством атмосферных явлений, попадает в почву или воду в виде соединений с другими элементами (т.н. нитратов). Затем азот усваивается продуцентами, а после и консументами. При разложении деструкторами мертвого органического вещества и вместе с продуктами выделения животных, в почвенной и водной средах происходит накопление азотосодержащего газа аммиака. В дальнейшем, под воздействием различных бактерий, азот либо снова попадает в атмосферу, либо в составе нитратов оказывается в почве и воде. Причем растворенные в воде нитраты могут оседать на дне водоемов, и в этом случае азот, содержащийся в них, выпадает из круговорота веществ. В отличии от азота, резервным фондом круговорота фосфора служат горные породы и другие отложения, образовавшиеся в течении миллионов лет. Содержащиеся в них соединения фосфора (фосфаты) подвергаются постепенному растворению, после чего фосфор из растворенных фосфатов переходит к растениям, а затем и к животным. После разложения мертвого органического вещества, фосфор, находившейся в нем, оказывается в составе соединений, содержащихся в воде и почве, и снова попадает в обменый фонд круговорота. Однако часть останков животных (прежде всего костная ткань) со временем соединяется с фосфатными породами или отложениями на дне водоемов. В последнем случае происходит выпадение фосфора из беогеохимического цикла. Но возвращение фосфора в круговорот происходит в гораздо меньших количествах, чем выпадение из него. Деятельность человека также приводит к большим утечкам фосфора, в результате чего в будущем может начаться дефицит данного элемента. Одной из основных особенностей круговорота серы состоит в том, что его резервный фонд находится одновременно и в почве, и в атмосфере. В виде соединений с металлами (сульфидов) она залегает в виде руд на суше и входит в состав глубоководных отложений. В доступную для усвоения организмами растворимую форму эти соединения переводятся так называемыми хемосинтезирующими бактериями, способными получать энергию путём окисления восстановленных соединений серы. В результате образуются т.н. сульфаты, которые используются растениями. Глубоко залегающие сульфаты вовлекаются в круговорот другой группой микроорганизмов, восстанавливающих сульфаты до сероводорода.

В заключении, необходимо рассмотреть биогеохимические циклы углерода и воды. Углерод имеет исключительное значение для живого вещества. Из углерода в экосистеме создаются миллионы органических соединений. Углерод из углекислого газа атмосферы в процессе фотосинтеза, осуществляемого растениями, ассимилируется и превращается в органические соединения растений, а затем и животных. На следующем этапе круговорота органическая масса в результате дыхания и разложения превращается в углекислый газ или оседают в виде органических отложений (например, торфа) которые, в свою очередь, дают начало многим другим соединениям — каменным углям, нефти. Огромное количество углекислоты законсервировано в виде ископаемых известняков и других пород. Между углекислым газом атмосферы и водой океана существует подвижное равновесие. Организмы поглощают углекислый кальций, создают свои скелеты, а затем из них образуются пласты известняков. Атмосфера пополняется углекислым газом благодаря процессам разложения органических веществ, карбонатов и т.д. Особенно мощным источником являются вулканы, газы которых состоят главным образом из паров воды и углекислого газа, а также сжигание ископаемого топлива человеком. В процессе протекания круговорота воды, происходит испарение влаги с поверхности водоемов и уход ее в воздушную среду, после чего она переносится потоками воздуха на большие расстояния. В дальнейшем, вода выделяется из атмосферы посредством осадков. Часть из них растворяют горные породы и таким образом делают содержащиеся в их составе соединения доступными для усвоения продуцентами. Благодаря атмосферным осадкам также образуется фонд грунтовых вод. Не следует забывать и о потреблении воды живыми организмами. Особое внимание следует акцентировать на том, что водоемы с испарением теряют больше воды, чем получают с осадками. Кроме того, в результате деятельности человека сокращается пополнение грунтовых вод. Следовательно, вода является трудновосполнимым ресурсом, требующим очень рационального использования. Таким образом, главное свойство потоков веществ в экосистемах — их цикличность. Вещества в экосистемах совершают сложный многоступенчатый круговорот, попадая сначала к живым организмам, затем в абиотическую среду и вновь возвращаясь к организмам. При этом, часть массы веществ могут надолго выпасть из биогеохиимческих циклов. Биогеохимические циклы веществ сопровождают энергетические потоки в экосистемах. Вмешательство человека в данные процессы может неблагоприятно сказаться на состоянии отдельных экосистем и биосферы в целом. Экологические законы.

Природа действует в согласии со своими законами, а человек - в соответсвии со своими представлениями о законе.

В биологических, экологических науках нет общих законов типа общей и частичной теории относительности или ньютоновской механики. Существует лишь широкие эмпирические обобщения всегда с неизбежными исключениями, а потому они объясняют только часть наблюдаемого мира и крайне редко предсказывают новые факты. Жизнь намного сложнее физических явлений и не сводима к ним. Поэтому она и требует разветвленной сети обобщений. Поэтому физике - физиково, биологии- биологиево, экологии - экологиево. В «Природопользовании» Н.Ф. Реймерс обращает внимание на максимум экологических закономерностей в рамках всего цикла экологических наук и природопользования. Ю. Одум в «Основах экологии» приводит 66 экологических принципов и концепций.

Закон внутреннего динамического равновесия:

Н. Ф. Реймерс описал этот закон; устанавливающий, что энергия, вещество, информация и динамическое качество отдельных природных систем, включая экосистемы и биосферу в целом и их иерархии, взаимосвязаны и любое изменение одного из этих показателей вызывает сопутствующие функционально структурные количественные и качественные перемены всех других показателей, сохраняя общую сумму качеств систем.

Следствия действия этого закона обнаруживаются в том, что после любых изменений элементов естественной среды (вещественного состава, энергии, информации, скорости естественных процессов и т.п.) обязательно развиваются цепные реакции, которые стараются нейтрализовать эти изменения. Следует отметить, что незначительное изменение одного показателя может послужить причиной сильных отклонений в других и в всей экосистеме.

Изменения в больших экосистемах могут иметь необратимый характер, а любые локальные преобразования природы вызовут в биосфере планеты (то есть в глобальном масштабе) и в ее наибольших подразделах реакции ответа, которые предопределяют относительную неизменность эколого-экономического потенциала. Искусственное возрастание эколого-экономического потенциала ограниченное термодинамической стойкостью естественных систем.

 

Закон генетического разнообразия:

Все живое генетическое разное и имеет тенденцию к увеличению биологической разнородности.

Закон имеет важное значение в природопользовании, в особенности в сфере биотехнологии (генная инженерия, биопрепараты), если не всегда можно предусмотреть результат нововведений во время выращивания новых микрокультур через возникающие мутации или распространение действия новых биопрепаратов не на те виды организмов, на которые они рассчитывались.

Закон исторической необратимости: развитие биосферы и человечества как целого не может происходить от более поздний фаз к начальным, общий процесс развития однонаправленный. Повторяются лишь отдельные элементы социальных отношений (рабство) или типы хозяйничанья.

 

Закон константности (сформулированный В. Вернадским):

Количество живого вещества биосферы (за определенное геологическое время) есть величина постоянная. Этот закон тесно связан с законом внутреннего динамического равновесия. По закону константности любое изменение количества живого вещества в одном из регионов биосферы неминуемое приводит к такой же по объему изменения вещества в другом регионе, только с обратным знаком.

Следствием этого закона есть правило обязательного заполнения экологических ниш.

Закон корреляции (сформулированный Ж. Кювье): в организме как целостной системе все его части отвечают одна другой как за строением, так и за функциями. Изменение одной части неминуемо вызовет изменения в других.

 

Закон максимизации энергии (сформулированный Г. и Ю. Одумами и дополненный М. Рэймерсом):

В конкуренции с другими системами сохраняется та из них, которая наибольшее оказывает содействие поступлению энергии и информации и использует максимальную их количество наиэффективнее. Для этого такая система, большей частью, образовывает накопители (хранилища) высококачественной энергии, часть которой тратит на обеспечение поступления новой энергии, обеспечивает нормальный кругооборот веществ и создает механизмы регулирования, поддержки, стойкости системы, ее способности приспосабливаться к изменениям, налаживает обмен с другими системами. Максимизация — это повышение шансов на выживание.

 

Закон максимума биогенной энергии (закон В.И. Вернадского— Э.С. Бауэра):

Любая биологическая и «бионесовершенная» система с биотой, которая находится в состоянии «стойкого неравновесия» (динамично подвижного равновесия с окружающей средой), увеличивает, развиваясь, свое влияние на среду.

В процессе эволюции видов, пишет Вернадский, выживают те, которые увеличивают биогенную геохимическую энергию. По мнению Бауэра, живые системы никогда не находятся в состоянии равновесия и выполняют за счет своей свободной энергии полезную работу против равновесия, которого требуют законы физики и химии за существующих внешних условий.

Вместе с другими фундаментальными положениями закон максимума биогенной энергии служит основой разработки стратегии природопользования.

 

Закон минимума (сформулированный Ю. Либихом):

Стойкость организма определяется самым слабым звеном в цепи ее экологических потребностей. Если количество и качество экологических факторов близки к необходимому организму минимума, он выживает, если меньшие за этот минимум, организм гибнет, экосистема разрушается.

Поэтому во время прогнозирования экологических условий или выполнение экспертиз очень важно определить слабое звено в жизни организмов.

 

Закон ограниченности естественных ресурсов:

Все естественные ресурсы в условиях Земли исчерпаемые. Планета есть естественно ограниченным телом, и на ней не могут существовать бесконечные составные части.

 

Закон однонаправленности потока энергии:

Энергия, которую получает экосистема и которая усваивается продуцентами, рассеивается или вместе с их биомассой необратимо передается консументам первого, второго, третьего и других порядков, а потом редуцентам, что сопровождается потерей определенного количества энергии на каждом трофическом уровне в результате процессов, которые сопровождают дыхание. Поскольку в обратный поток (от редуцентов к продуцентам) попадает очень мало начальной энергии (не большее 0,25%), термин «кругооборот энергии» есть довольно условным

 

Закон оптимальности:

Никакая система не может суживаться или расширяться к бесконечности. Никакой целостный организм не может превысить определенные критические размеры, которые обеспечивают поддержку его энергетики. Эти размеры зависят от условий питания и факторов существования.

В природопользовании закон оптимальности помогает найти оптимальные с точки зрения производительности размеры для участков полей, выращиваемых животных, растений. Игнорирование закона - создание огромных площадей монокультур, выравнивание ландшафта массовыми застройками и т.п. -привело к неприродной однообразности на больших территориях и вызвало нарушение в функционировании экосистем, экологические кризы.

 

Закон пирамиды энергий (сформулированный Р. Линдеманом):

С одного трофического уровня экологической пирамиды на другого переходит в среднем не более 10 % энергии.

По этому закону можно выполнять расчеты земельных площадей, лесных угодий с целью обеспечения население продовольствием и другими ресурсами.

 

Закон равнозначности условий жизни:

Все естественные условия среды, необходимые для жизни, играют равнозначные роли. Из него вытекает другой закон-совокупного действия экологических факторов. Этот закон часто игнорируется, хотя имеет большое значение.

 

Закон развития окружающей среды:

Любая естественная система развивается лишь за счет использования материально-энергетических и информационных возможностей окружающей среды. Абсолютно изолированное саморазвитие невозможно — это вывод из законов термодинамики.

Очень важными являются следствия закона.

1. Абсолютно безотходное производство невозможное.

2. Любая более высокоорганизованная биотическая система в своем развитии есть потенциальной угрозой для менее организованных систем. Поэтому в биосфере Земли невозможно повторное зарождение жизни — оно будет уничтожено уже существующими организмами

3. Биосфера Земли, как система, развивается за счет внутренних и космических ресурсов.

Закон уменьшения энергоотдачи в природопользовании: в процессе получения из естественных систем полезной продукции с течением времени (в историческом аспекте) на ее изготовление в среднем расходуется все больше энергии (возрастают энергетические затраты на одного человека). Так, ныне затраты энергии на одного человека за сутки почти в 60 раз большие, чем во времена наших далеких предков (несколько тысяч лет тому). Увеличение энергетических затрат не может происходить бесконечно, его можно и следует рассчитывать, планируя свои отношения с природой с целью их гармонизации.

 

Закон совокупного действия естественных факторов (закон Митчерлиха—Тинемана—Бауле):

Объем урожая зависит не от отдельного, пусть даже лимитирующего фактора, а от всей совокупности экологических факторов одновременно. Частицу каждого фактора в совокупном действии ныне можно подсчитать. Закон имеет силу при определенных условиях - если влияние монотонное и максимально обнаруживается каждый фактор при неизменности других в той совокупности, которая рассматривается.

 

Закон толерантности (закон Шелфорда):

Лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического влияния, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору. Соответственно закону любой излишек вещества или энергии в экосистеме становится его врагом, загрязнителем.

 

Закон грунтоистощения (уменьшение плодородия):

Постепенное снижение естественного плодородия почв происходит из-за продолжительного их использования и нарушения естественных процессов почвообразования, а также вследствие продолжительного выращивания монокультур (в результате накопления токсичных веществ, которые выделяются растениями, остатков пестицидов и минеральных удобрений).

 

Закон физико-химического единства живого вещества (сформулированный В. Вернадским):

Все живое вещество Земли имеет единую физико-химическую природу. Из этого явствует, что вредное для одной части живого вещества вредит и другой его части, только, конечно, разной мерой. Разность состоит лишь в стойкости видов к действию того ли другого агента. Кроме того, наличие в любой популяции более или менее стойких к физико-химическому влиянию видов, приводит к тому, что скорость отбора по выносливости популяций к вредному агенту прямо пропорциональная скорости размножения организмов и дежурство поколений. Поэтому продолжительное употребление пестицидов экологически недопустимо, так как вредители, которые интенсивно размножаются, более быстро приспосабливаются и выживают, а объемы химических загрязнений приходится все более увеличивать.

 

Закон экологической корреляции:

В экосистеме, как и в любой другой системе, все виды живого вещества и абиотические экологические компоненты функционально отвечают один другому. Выпадание одной части системы (вида) неминуемо приводит к выключению связанных с ею других частей экосистемы и функциональных изменений.

Научной общественности широко известны четыре афоризма «закона» экологии американского ученого Б. Коммонера:

1)все связано со всем;

2)все должно куда-то деваться;

3)природа «знает» лучше;

4) ничто не дается даром.

 

Как отмечает М. Реймерс, первый закон Б. Коммонера близкий по смыслу к закону внутреннего динамического равновесия, второй — к этому же закону и закону развития естественной системы за счет окружающей среды, третий — предостерегает нас от самоуверенности, четвертый — снова затрагивает проблемы, которые обобщают закон внутреннего динамического равновесия, законы константности и развития естественной системы. По четвертому закону Б. Коммонера мы должны возвращать природе то, что берем у нее, иначе катастрофа с течением времени неминуемая.

Следует вспомнить также важные экологические законы, сформулированные в работах известного американского эколога Д. Чираса в 1991—1993 гг. Он подчеркивает, что Природа существует вечно (с точки зрения человека) и сопротивляется деградации благодаря действию четырех экологических законов: 1) рецикличности или повторного многоразового использования важнейших веществ; 2) постоянного восстановления ресурсов; 3) консервативного потребления (если живые существа потребляют лишь то (и в таком количестве), что им необходимо, не больше и не меньше); 4) популяционного контроля (природа не допускает «взрывного» роста популяций, регулируя количественный состав того ли другого вида путем создания соответствующих условий для его существования и размножения). Важнейшей задачей экологии Д. Чирас считает изучение структуры и функций экосистем, их уравновешенности, или неуравновешенности, то есть причин стабильности и разбалансирования экосистем.

Таким образом, круг задач современной экологии очень широкий и охватывает практически все вопросы, которые затрагивают взаимоотношения человеческого общества и естественной среды, а также проблемы гармонизации этих отношений.

 







Дата добавления: 2015-06-15; просмотров: 1788. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия